
 Journal of Technology and Informatics (JoTI)

Vol. 7, No. 2, October 2025

P-ISSN 2721-4842

E-ISSN 2686-6102

190

Performance Analysis of Provider and Riverpod State

Management Library on Flutter Applications
Jonathan Aditya Puryanto1*, Habibullah Akbar2

1*Informatics Engineering, Faculty of Computer Science, Esa Unggul University, Jakarta, Indonesia
2Master of Computer Science, Faculty of Computer Science, Esa Unggul University, Jakarta, Indonesia

e-mail: jonathanadityapuryanto@student.esaunggul.ac.id1*, habibullah.akbar@esaunggul.ac.id2

Article Information Abstract:

State management libraries are essential components in Flutter

app development. This research aims to compare the

performance of the state management library Provider and its

successor, Riverpod, to assist Flutter developers in choosing the

right solution. Two versions of the MovieDB app were built, each

utilizing Provider and Riverpod. Performance testing was

conducted using three metrics: CPU Utilization, Memory Usage,

and Execution Time, across three data volumes (1,000, 5,000, and

10,000). The results showed that CPU Utilization varied by only

0.1–0.2% with Riverpod being slightly more efficient at 1,000 and

10,000 data volumes. Execution Times also showed minimal

differences, with Riverpod being marginally faster by

approximately 0.01 seconds at 5,000 and 10,000 data volumes.

Riverpod excelled in Memory Usage, demonstrating an average

reduction of about 3–6% across all data volumes, particularly at

higher data volumes. In conclusion, the performance of both

libraries is fundamentally similar, but Riverpod is offers better

memory efficiency and architectural flexibility. Therefore,

Riverpod is recommended for new projects, while Provider

remains a viable option for stable existing applications that

already use it.

Article History:

Received

Revised

Accepted

Published

: July 23th 2025

: September 16th 2025

: Oktober 20th 2025

: Oktober 28th 2025

*Correspondence:

jonathanadityapuryanto@student.esa

unggul.ac.id

Keywords:

Application Performance Testing,

Flutter, Provider, Riverpod, State

Management Library

Copyright © 2025 by Author.

Published by Universitas Dinamika.

This is an open access article under

the CC BY-SA license.

 10.37802/joti.v7i2.1164

Journal of Technology and

Informatics (JoTI)

P-ISSN 2721-4842

E-ISSN 2686-6102

https://e-

journals.dinamika.ac.id/index.php/joti

INTRODUCTION

The rapid advancement of mobile technology has led to a significant increase in mobile

application development for both Android and iOS platforms [1]. This growth is driven by

enhancements in hardware performance and software capabilities. As internet access becomes

widespread, users increasingly rely on mobile apps for daily activities, creating a highly

competitive app market [2]. This environment pushes developers to innovate continuously and

deliver high-quality user experiences, with users expecting apps to be fast, stable, and efficient.

https://creativecommons.org/licenses/by-sa/4.0/
https://e-journals.dinamika.ac.id/index.php/joti
https://e-journals.dinamika.ac.id/index.php/joti

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

191

Building native applications separately for each platform making significant challenges.

Different tools and programming languages for Android and iOS mean that developers often

must maintain two codebases, which increases both development time and cost. To solve this,

Google introduced Flutter, an open source cross-platform framework. Flutter allows developers

to create applications from a single codebase that runs on multiple platforms, including

Android and iOS [3]. Flutter has become one of the most popular choices for cross-platform

mobile application development [4].

Performance is a critical factor in mobile app development, including efficiency,

responsiveness, and stability, all of which significantly influence user experience [5]. Despite

technological advancements, mobile apps continue to face performance challenges. For

example, a survey by AppDynamics revealed that slow loading times, crashes, and freezes are

major sources of user frustration, with 55% of respondents reporting negative impacts from

these issues [6]. These findings highlight that optimizing performance is essential for

maintaining user satisfaction.

In Flutter, user interface components are called widgets. These widgets are immutable,

meaning their properties cannot be modified at runtime [7]. Therefore, Flutter relies on the

concept of state. State can change based on user interactions and can be accessed

synchronously during widget construction. It may also change over the widget's lifetime [8].

When state changes, Flutter rebuilds affected widgets by creating new instances based on new

the state. The built-in setState() method initiate this rebuild process. setState() calls the widget’s

build method and reconstructs the UI based on the new state. However, setState() can cause

unnecessary rebuilds across all widgets in the current tree, even those unrelated to the changed

state [9]. As an application’s widget hierarchy becomes more complex, this inefficiency can

waste resources and degrade application performance.

To address these limitations, Flutter developers use state management techniques to

control which UI parts are rebuilt upon state changes. State management decouples state from

UI components, allowing only dependent widgets to update. Using state management libraries

can reduce resource consumption and improve app performance efficiency [9]. One of the

most commonly used state management library is Provider [10]. Provider works by wrapping

InheritedWidget, developers typically manage state with ChangeNotifier, and use a Consumer

to listen for updates for widgets that need that state. However, there is a successor to Provider

called Riverpod. Riverpod improves this approach by eliminating the dependency on

InheritedWidgets and classes from the Flutter SDK. Allowing to define state as a global

variables and access them using specialized widgets such as ConsumerWidget and WidgetRef.

Previous research has shown that the choice of state management library can affect

Flutter app performance. For example, research [9] demonstrated that, for the same

application, using Provider resulted in better performance than using the BLoC State

Management Library or setState(). Similarly, research [4] found that Provider outperformed

another popular library, GetX. Although Provider is efficient in many cases, research [7] assume

that Provider is suitable only for small to medium-sized apps, as managing multiple

ChangeNotifier instances in larger apps can cause performance bottlenecks. Riverpod aims to

address some of Provider limitations and potentially offers better performance. However, there

are no direct experimental comparisons betweeen Provider and Riverpod have been conducted

recently. This represents a gap in the research, it is not yet clear whether Riverpod design

improvements translate into measurable performance gains over Provider.

To fill this gap, this study conducts a performance analysis of Provider and Riverpod

within a Flutter application. A simple movie catalog app named MovieDB is developed in two

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

192

versions, one using Provider and the other using Riverpod. Both versions share the same

functionality and UI design. Their performance is evaluated under different test scenarios and

varying data volumes, representing application complexity [11]. Key performance metrics,

including CPU Utilization, Memory Usage, and Execution Time, are collected for each scenario

[4,5,9,10,11]. By analyzing the results, this study identifies which state management approach

is more efficient based on the application scale, providing recommendations for Flutter

developers when choosing between Provider and Riverpod based on their applications needs.

METHOD

This study employs an experimental approach to evaluate the performance of two state

management libraries, within a controlled environment. Two identical versions of a movie

catalog app named MovieDB were developed, differing only in their state management

implementation. This design allows the performance evaluation to focus specifically on the

influence of the state management library used.

Figure 1. Research Methodology

Literature Review

The literature review phase is carried out to study the sources and materials needed to

conduct research. This analysis of literature and study results is done to identify the factors that

affect performance or the performance metrics like CPU utilization, memory usage, and

execution time. The literature review also supports the design of test scenarios and the

selection of tools such as Snapdragon Profiler and Flutter DevTools. Additionally, it justifies the

choice of a movie catalog application as a testing medium, given its simplicity, scalability, and

common UI and data interaction patterns in Flutter apps.

Application Development

The application development process starts with gathering requirements to define the

application’s needs. This research aims to show how different state management approaches

affect Flutter application performance. To ensure an objective comparison, both app versions

will have same appearances and functionalities, differing only in state management

implementation.

Previous studies on state management performance have often utilized movie catalog

applications as test subjects. For example, the MovDB application [9] and ShowTime application

[4] provide relevant benchmarks. These applications demonstrate that the movie catalog

format is suitable for testing various performance aspects, as their structure allows for easy

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

193

modification of the displayed movie data. This capability enables simulations of heavier

application loads and more complex scenarios by adjusting the volume of movie data shown.

Based on this context, the criteria for the new MovieDB application designed for state

management performance testing are as follows:

1. Multi-page Navigation

a. Movies Page: Displays a scrollable list of movies, featuring an AppBar that shows the

amount of displayed movies and popup button to adjust the quantity of the movies.

b. Search Page: Allows users to search for movies by title.

c. Settings Page: Allows users to toggle dark mode, affecting the entire application,

including the Movies and Search pages.

2. Remote API Calls

The application will implement remote API calls to fetch movie data. The TMDB API,

specifically the Popular Movies endpoint, will be used to retrieve a list of currently popular

movies. This API was selected for its ease of implementation and comprehensive

documentation, ensuring a fast data-fetching process, which is critical for testing.

Data Collection

Performance testing is essential for assessing application performance during software

development. This involves evaluating the speed, effectiveness, and resource utilization of

software and hardware [13]. Based on previous research, several performance evaluation

metrics are relevant for assessing state management efficiency in Flutter applications:

1. CPU Utilization

CPU utilization means the percentage of CPU resources consumed by the application. CPU

performance may be affected by the efficiency of state management. Complex or inefficient

management can lead to excessive overhead, increasing CPU resource usage. Optimizing

state management is essential for maintaining good application performance [9].

2. Memory Usage

Memory usage refers to the amount of memory consumed by the application. Inefficient

state management can negatively impact memory usage. Poor management of state data

may result in excessive memory consumption or unnecessary data accumulation. Selecting

an efficient state management method is vital for optimizing memory [9].

3. Execution Time

Execution time is the duration from when a user interaction triggers a state update to when

new widgets are rebuilt. State management influences execution time, state updates can

be time-consuming if not well organized, potentially increasing execution time [14].

The Performance Metrics will be evaluated across three test scenarios, this experimental

scenario is structured based on the factors identified in the literature analysis, as detailed in

Table 1 below:

Table 1. Test Scenario

Scenario ID Description

Sc-01 Scrolling the movie cards on the movie page from first to last.

Sc-02 Searching a movie with the keyword “dark” and scrolling the results.

Sc-03 Changing the app theme (light/dark) and navigating to Search page and

Movie page

Data Analysis

Analysis of test data involves interpreting results from experiments to draw conclusions

[15]. The analysis of test data in this study involved categorizing application complexity by data

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

194

volume into three levels: Low Data (1,000 records), Medium Data (5,000 records), and High

Data (10,000 records). These varying data volumes illustrate the increasing complexity of the

application, allowing for an evaluation of how state management performs as the data volume

increases and the application becomes more complex. Each scenario is tested 20 times across

both application versions. The experiment was conducted on a Xiaomi Mi 8 with Android 15,

6GB RAM, and a Qualcomm Snapdragon 845 processor. Performance monitoring tools,

including Snapdragon Profiler and Flutter DevTools used for measuring performance data. The

data analysis process consists of two stages:

1. Average per Testing Scenario

The values from the 20 runs of each scenario are averaged. The graph will illustrate the app

performance of each scenario (Sc-01, Sc-02, Sc-03) across different data volumes,

facilitating comparative analysis.

2. Overall Average Based on Data Volume

All averaged data from the three scenarios are combined to calculate the overall average

for each metric based on data volume. This stage identifies the most efficient state

management method for small, medium, or large data scales, forming the basis for

conclusions regarding the optimal state management approach for a flutter application.

The analysis will provide interpretations of the quantitative data from the tests, leading

to recommendations for Flutter developers on selecting the optimal state management

approach. Key findings will address the research objectives, determining which method is more

efficient overall. These insights will guide flutter developers in making informed choices for

different application scales.

RESULTS AND DISCUSSION

Aplication Development

Figure 2. MovieDB Application Architecture

The MovieDB application features a modular clean architecture with clear separation of

concern. The architecture consists of five key components:

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

195

1. main: Contains the entry point (main.dart), initializing the app with runApp() and global

configurations like theme and routing.

2. presentation: Serves the user interface with various pages and widgets.

3. model: Stores data structures, like the Movie model.

4. repository: Acts as the data source, providing static movie data from TMDb API.

5. provider: Manages state and application logic, bridging data to the UI and vice-versa.

Figure 3. MovieDB User Interface Implementation

Data Collection

Performance testing was conducted to evaluate the efficiency of the state management

libraries, across various application resource metrics. For CPU utilization and memory usage,

tests were conducted by building application in release mode and then using the Realtime

Performance Analysis feature of the Snapdragon Profiler. Meanwhile, execution time were

measured by building application in profile mode to use logging features in Flutter DevTools.

CPU Utilization and Memory Usage

CPU utilization is recorded as a percentage (%), while memory usage is measured in

bytes and then converted to megabytes (MB). The performance data was exported to CSV

format for analysis. To calculate averages for both metrics, the start and end timestamps of the

test are identified, and the values between these timestamps are averaged for each scenario.

Figure 4. Snapdragon Profiler Realtime Performance Analysis

Execution Time

Execution time were measured using Flutter DevTools. Execution time is determined by

recording timestamps at the beginning and end of the code segment being evaluated. The

difference between these timestamps is calculated to express the total duration in seconds.

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

196

Figure 5. Flutter DevTools Logging

Data Analysis

This section assesses the performance of Provider and Riverpod in a Flutter application.

Key metrics such as CPU Utilization, Memory Usage, and Execution Time are analyzed across

varying data volumes to identify efficiency differences.

Cpu Utilization Analysis

Figure 8. CPU Utilization Measurement Results

For a data volume of 1,000, CPU utilization varied across scenarios, with Provider

peaking at 13.41% in Sc-01 compared to Riverpod 12.02%. In Sc-02, both libraries showed

lower CPU utilization around 5%, with Provider at 5.08% and Riverpod at 5.00%. During the Sc-

03, Riverpod consumed more CPU at 6.66% compared to Provider's 5.46%. As the data volume

increased to 5,000, CPU utilization rise, especially in Sc-01, where Provider reached 14.44% and

Riverpod 14.53%. In Sc-02, Riverpod's CPU usage increased slightly to 5.46%, while Provider

was at 5.12%. At a volume of 10,000, CPU utilization peaked at 17.66% for Provider and 16.79%

for Riverpod in Sc-01, with both libraries maintaining similar values in Sc-02, 5.69% for Riverpod

vs. 5.82% for Provider and Sc-03 5.42% for Provider and 5.46% for Riverpod.

Figure9. CPU Utilization Comparison (%)

The overall average CPU utilization shows very close values across all data volumes,

with differences between the two state management libraries around 0.1–0.2%. Overall, there

is no significant difference in CPU usage metrics, indicating that both architectures manage

state changes with nearly equal efficiency despite minor variations. At 1,000 data, Provider

averaged 7.98% while Riverpod was at 7.89%. At 5,000 data, Provider was at 8.37% compared

to Riverpod's 8.53%. Finally, at 10,000 data, Provider reached 9.59% versus Riverpod's 9.36%.

These small fluctuations may be attributed to architectural differences, as Provider uses

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

197

BuildContext while Riverpod uses WidgetRef, potentially reducing state tracking load. Overall,

both Provider and Riverpod demonstrate comparable CPU utilization efficiency.

Memory Usage Analysis

Figure 60. Memory Usage Measurement Results

For a data volume of 1,000, memory usage ranged between 200-220 MB. In Sc-01,

Provider used 204.27 MB, while Riverpod consumed 201.30 MB. In Sc-02, Provider increased

to 211.98 MB, with Riverpod slightly higher at 215.65 MB. During Sc-03, Provider had the

highest memory usage at 223.23 MB, compared to Riverpod 205.66 MB. As the volume

increased to 5,000, Provider memory usage rise to 220.30 MB and Riverpod to 215.83 MB in

Sc-01, while Sc-02 showed nearly equal usage around 213–214 MB for both libraries. In Sc-03,

memory usage decreased to 207.73 MB for Provider and 196.24 MB for Riverpod, with Provider

still consuming more memory. At a volume of 10,000, Provider's memory usage was 228.78 MB

in Sc-01 compared to Riverpod 214.52 MB, and in Sc-02, Provider used 206.87 MB versus

Riverpod 202.33 MB. Overall, Riverpod demonstrated better memory efficiency.

Figure 1. Memory Usage Comparison (MB)

The overall average memory usage indicates that Riverpod consistently consumes

slightly less memory than Provider. For instance, at a volume of 10,000 data points, Provider

used 213.83 MB while Riverpod only used 202.71 MB, showing a difference of about 5%. A

similar pattern appears at 1,000 and 5,000 data points. This difference suggests that

applications built with Riverpod are more memory-efficient. Specifically, at 1,000 data points,

Provider consumed 213.16 MB compared to Riverpod 207.54 MB, and at 5,000, Provider was

at 213.94 MB while Riverpod was 208.71 MB. Riverpod efficiency comes from its use of

autoDispose, which automatically releases unused states. In contrast, Provider relies on

InheritedWidget and BuildContext, which can result in longer retention of states in memory.

This makes Riverpod the more efficient choice for managing memory usage.

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

198

Execution Time Analysis

Figure 72. Execution Time Measurement Results

For a data volume of 1,000, execution time was relatively quick, with Sc-01 taking 1.35

seconds for Provider and 1.41 seconds for Riverpod. In Sc-02, execution times were short, at

0.53 seconds for Provider and 0.45 seconds for Riverpod, showing Riverpod advantage. For Sc-

03, both libraries were nearly identical, taking around 0.54 seconds. As the volume increased

to 5,000, Sc-01 has longer execution times of 6.56 seconds for Provider and 6.61 seconds for

Riverpod, while Sc-02 rise to 0.86 seconds for Provider and 0.78 seconds for Riverpod. In Sc-

03, both libraries performed similarly. At a volume of 10,000, execution times extended to 8.76

seconds for Provider and 8.80 seconds for Riverpod in Sc-01, while Sc-02 took 0.93 seconds

for Provider and 0.86 seconds for Riverpod, with Sc-03 both remaining around 0.56 seconds

Figure 13. Execution Time Comparison (s)

The overall average execution time for both approaches across various data volumes is

nearly identical. For 1,000 data, both libraries took 0.81 seconds. At 5,000 points, Provider was

at 2.66 seconds and Riverpod at 2.65 seconds, and at 10,000 points, Provider took 3.42 seconds

while Riverpod took 3.41 seconds. The differences are minimal, around 0.01 seconds, are

practically insignificant. This similarity is reasonable since the application logic and data

processing remain the same regardless of the state management method. Riverpod may have

slight overhead from accessing global providers via WidgetRef, while Provider uses Flutter built

in BuildContext, but these differences are negligible. With Flutter’s compiler optimizations,

both architectures achieve nearly identical runtime efficiency. Therefore, it can be concluded

that execution time is not significantly affected by the choice of state management library,

supporting the finding that both methods provide equivalent runtime performance.

CONCLUSIONS AND SUGGESTIONS

In Flutter application development, selecting a state management library can

significantly impacts performance. This study compared Provider and its successor, Riverpod,

focusing on performance metrics. Overall, both libraries demonstrated similar performance.

CPU utilization showed minimal variation, averaging around 0.1–0.2% across all scenarios, while

execution times differed by only 10–30 milliseconds. Riverpod had an advantage in memory

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

199

usage, consuming 3–6% less memory, especially with larger data volumes. Based on the

findings, Riverpod is recommended for new Flutter projects needing easier state management,

greater memory efficiency, and scalability. However, for existing projects using Provider,

migration for minor performance differences is unnecessary. Ultimately, the choice of library

should depend on each project's specific needs. If memory efficiency and modern architecture

are priorities, Riverpod is ideal, but Provider remains a valuable option. Future research should

test the performance of additional state management libraries, such as GetX, BLoC, or MobX,

to identify optimal solutions for various Flutter contexts. Additionally, testing on iOS platforms

is recommended to assess performance in different ecosystems.

REFERENCES

[1] Endah Puspitarini, Roudhotul Hanifa, and Faridatun Nadziroh, “Rancang Bangun Aplikasi

Absensi Mahasiswa Pada Platform Android,” Journal of Technology and Informatics (JoTI),

vol. 2, no. 1, pp. 48–55, Oct. 2020, doi: 10.37802/joti.v2i2.114.

[2] Nur Moniroh and Rafiq Chasnan Habibi, “Implementation of UAT and Blackbox Methods

in the Android-Based Prayer Collection and News Portal Application of PP El-Bayan,”

Journal of Technology and Informatics (JoTI), vol. 7, no. 1, pp. 76–89, Apr. 2025, doi:

10.37802/joti.v7i1.884.

[3] M. Zulistiyan, M. Adrian, Y. Firdaus Arie Wibowo, and J. Telekomunikasi, “Performance

Analysis of BLoC and GetX State Management Library on Flutter,” Journal of Information

System Research (JOSH), vol. 5, no. 2, pp. 583–591, 2024, doi: 10.47065/josh.v5i2.4698.

[4] I. Husain, P. Purwantoro, and C. Carudin, “Analisis Performa State Management Provider

Dan GetX Pada Aplikasi Flutter,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no.

2, pp. 1417–1422, Sep. 2023, doi: 10.36040/jati.v7i2.6867.

[5] M. Abdul Hakeem, M. Abdul Razack Maniyar, and M. Khalid Mubashir Uz Zafar,

“Performance Testing Framework for Software Mobile Applications,” Int J Innov Res Sci

Eng Technol, vol. 7, pp. 6225–6234, 2020, [Online]. Available: www.ijirset.com

[6] AppDynamics, “The App Attention Index 2019: The Era of the Digital Reflex,”

AppDynamics. Accessed: Oct. 11, 2024. [Online]. Available:

https://www.appdynamics.com/blog/news/app-attention-index-2019/

[7] D. Slepnev, “State Management Approaches In Flutter,” South-Eastern Finland University

of Applied Science, 2020. Accessed: Oct. 11, 2024. [Online]. Available:

https://www.theseus.fi/bitstream/handle/10024/355086/Dmitrii_Slepnev.pdf

[8] Flutter Team, “State class - widgets library - Dart API.” Accessed: Jul. 14, 2025. [Online].

Available: https://api.flutter.dev/flutter/widgets/State-class.html

[9] R. R. Prayoga, G. Munawar, R. Jumiyani, and A. Syalsabila, “Performance Analysis of BLoC

and Provider State Management Library on Flutter,” Jurnal Mantik, vol. 5, no. 3, pp. 1591–

1597, 2021, Accessed: Oct. 11, 2024. [Online]. Available:

https://iocscience.org/ejournal/index.php/mantik/article/view/1539

[10] pub.dev, “Search results for state management (sorted by downloads).” Accessed: Jul.

14, 2025. [Online]. Available:

https://pub.dev/packages?q=state+management&sort=downloads

[11] Mgs. M. F. Abdillah, I. L. Sardi, and A. Hadikusuma, “Analisis Performa GetX dan BLoC

State Management Library Pada Flutter untuk Perangkat Lunak Berbasis Android,”

LOGIC: Jurnal Penelitian Informatika, vol. 1, no. 1, p. 73, Sep. 2023, doi:

10.25124/logic.v1i1.6479.

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTI), Vol.7, No.2, October 2025, Page 190-200

200

[12] M. Hafid, N. Azis, A. Pinandito, I. Sartika, and E. Maghfiroh, “Analisis Perbandingan

Penggunaan State Management pada Aplikasi Ditonton menggunakan Framework

Flutter,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 1, pp.

148–153, 2023, Accessed: Oct. 11, 2024. [Online]. Available: https://j-

ptiik.ub.ac.id/index.php/j-ptiik/article/view/12124

[13] M. A. Putri, H. N. Hadi, and F. Ramdani, “Performance testing analysis on web application:

Study case student admission web system,” in 2017 International Conference on

Sustainable Information Engineering and Technology (SIET), IEEE, Nov. 2017, pp. 1–5. doi:

10.1109/SIET.2017.8304099.

[14] A. A. D. Jatnika, M. A. Akbar, and A. Pinandito, “Comparative Analysis of the Use of State

Management in E-commerce Marketplace Applications Using the Flutter Framework,”

Journal of Information Technology and Computer Science, vol. 8, no. 2, pp. 111–124, Aug.

2023, doi: 10.25126/jitecs.202382557.

[15] K. Afandi, M. H. Arief, N. Faizatul Laily, and D. Maulana Nugroho, “Analisis Performa

Akademik Mahasiswa Menggunakan Social Network Analysis (Studi Kasus: Prodi Bisnis

Digital Universitas dr. Soebandi),” Journal of Technology and Informatics (JoTI), vol. 5, no.

2, pp. 64–69, Apr. 2024, doi: 10.37802/joti.v5i2.514.

