»JOI

f Technology and Informatics

Journal o

Journal of Technology and Informatics (JoTI)
Vol. 7, No. 2, October 2025

P-ISSN 2721-4842

E-ISSN 2686-6102

Performance Analysis of Provider and Riverpod State
Management Library on Flutter Applications

Jonathan Aditya Puryanto™’,

Habibullah Akbar?

"Informatics Engineering, Faculty of Computer Science, Esa Unggul University, Jakarta, Indonesia
’Master of Computer Science, Faculty of Computer Science, Esa Unggul University, Jakarta, Indonesia
e-mail: jonathanadityapuryanto@student.esaunggul.ac.id", habibullah.akbar@esaunggul.ac.id?

Article Information

Article History:

Received - July 23t 2025
Revised : September 16t 2025
Accepted : Oktober 20t 2025
Published : Oktober 28t 2025
*Correspondence:
jonathanadityapuryanto@student.esa
unggul.ac.id

Keywords:

Application Performance Testing,
Flutter, Provider, Riverpod, State
Management Library

Copyright © 2025 by Author.
Published by Universitas Dinamika.

Nole

This is an open access article under
the CC BY-SA license.

g 10.37802/joti.v7i2.1164

Journal of Technology and
Informatics (JoTI)

P-ISSN 2721-4842

E-ISSN 2686-6102

https://e-
journals.dinamika.ac.id/index.php/joti

Abstract:

State management libraries are essential components in Flutter
app development. This research aims to compare the
performance of the state management library Provider and its
successor, Riverpod, to assist Flutter developers in choosing the
right solution. Two versions of the MovieDB app were built, each
utilizing Provider and Riverpod. Performance testing was
conducted using three metrics: CPU Utilization, Memory Usage,
and Execution Time, across three data volumes (1,000, 5,000, and
10,000). The results showed that CPU Utilization varied by only
0.1-0.2% with Riverpod being slightly more efficient at 1,000 and
10,000 data volumes. Execution Times also showed minimal
differences, with Riverpod being marginally faster by
approximately 0.01 seconds at 5,000 and 10,000 data volumes.
Riverpod excelled in Memory Usage, demonstrating an average
reduction of about 3-6% across all data volumes, particularly at
higher data volumes. In conclusion, the performance of both
libraries is fundamentally similar, but Riverpod is offers better
memory efficiency and architectural flexibility. Therefore,
Riverpod is recommended for new projects, while Provider
remains a viable option for stable existing applications that
already use it.

INTRODUCTION

The rapid advancement of mobile technology has led to a significant increase in mobile
application development for both Android and iOS platforms [1]. This growth is driven by
enhancements in hardware performance and software capabilities. As internet access becomes
widespread, users increasingly rely on mobile apps for daily activities, creating a highly
competitive app market [2]. This environment pushes developers to innovate continuously and
deliver high-quality user experiences, with users expecting apps to be fast, stable, and efficient.

190

https://creativecommons.org/licenses/by-sa/4.0/
https://e-journals.dinamika.ac.id/index.php/joti
https://e-journals.dinamika.ac.id/index.php/joti

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

Building native applications separately for each platform making significant challenges.
Different tools and programming languages for Android and iOS mean that developers often
must maintain two codebases, which increases both development time and cost. To solve this,
Google introduced Flutter, an open source cross-platform framework. Flutter allows developers
to create applications from a single codebase that runs on multiple platforms, including
Android and iOS [3]. Flutter has become one of the most popular choices for cross-platform
mobile application development [4].

Performance is a critical factor in mobile app development, including efficiency,
responsiveness, and stability, all of which significantly influence user experience [5]. Despite
technological advancements, mobile apps continue to face performance challenges. For
example, a survey by AppDynamics revealed that slow loading times, crashes, and freezes are
major sources of user frustration, with 55% of respondents reporting negative impacts from
these issues [6]. These findings highlight that optimizing performance is essential for
maintaining user satisfaction.

In Flutter, user interface components are called widgets. These widgets are immutable,
meaning their properties cannot be modified at runtime [7]. Therefore, Flutter relies on the
concept of state. State can change based on user interactions and can be accessed
synchronously during widget construction. It may also change over the widget's lifetime [8].
When state changes, Flutter rebuilds affected widgets by creating new instances based on new
the state. The built-in setState() method initiate this rebuild process. setState() calls the widget's
build method and reconstructs the Ul based on the new state. However, setState() can cause
unnecessary rebuilds across all widgets in the current tree, even those unrelated to the changed
state [9]. As an application’s widget hierarchy becomes more complex, this inefficiency can
waste resources and degrade application performance.

To address these limitations, Flutter developers use state management techniques to
control which Ul parts are rebuilt upon state changes. State management decouples state from
Ul components, allowing only dependent widgets to update. Using state management libraries
can reduce resource consumption and improve app performance efficiency [9]. One of the
most commonly used state management library is Provider [10]. Provider works by wrapping
InheritedWidget, developers typically manage state with ChangeNotifier, and use a Consumer
to listen for updates for widgets that need that state. However, there is a successor to Provider
called Riverpod. Riverpod improves this approach by eliminating the dependency on
InheritedWidgets and classes from the Flutter SDK. Allowing to define state as a global
variables and access them using specialized widgets such as ConsumerWidget and WidgetRef.

Previous research has shown that the choice of state management library can affect
Flutter app performance. For example, research [9] demonstrated that, for the same
application, using Provider resulted in better performance than using the BLoC State
Management Library or setState(). Similarly, research [4] found that Provider outperformed
another popular library, GetX. Although Provider is efficient in many cases, research [7] assume
that Provider is suitable only for small to medium-sized apps, as managing multiple
ChangeNotifier instances in larger apps can cause performance bottlenecks. Riverpod aims to
address some of Provider limitations and potentially offers better performance. However, there
are no direct experimental comparisons betweeen Provider and Riverpod have been conducted
recently. This represents a gap in the research, it is not yet clear whether Riverpod design
improvements translate into measurable performance gains over Provider.

To fill this gap, this study conducts a performance analysis of Provider and Riverpod
within a Flutter application. A simple movie catalog app named MovieDB is developed in two

191

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

versions, one using Provider and the other using Riverpod. Both versions share the same
functionality and Ul design. Their performance is evaluated under different test scenarios and
varying data volumes, representing application complexity [11]. Key performance metrics,
including CPU Utilization, Memory Usage, and Execution Time, are collected for each scenario
[4,5,9,10,11]. By analyzing the results, this study identifies which state management approach
is more efficient based on the application scale, providing recommendations for Flutter
developers when choosing between Provider and Riverpod based on their applications needs.

METHOD

This study employs an experimental approach to evaluate the performance of two state
management libraries, within a controlled environment. Two identical versions of a movie
catalog app named MovieDB were developed, differing only in their state management
implementation. This design allows the performance evaluation to focus specifically on the
influence of the state management library used.

Literature Data
Review Aplication Collection / ™
Provider State Development Defining Performance Data Analysis
Management Library N Evaluation Metrics
Requirement
Gathering Data Processing
Riverpod State Designing Test
Management Library — Scenario .
> Application » Conclusion
Implementation with Presentation of Test
— Provider Performance Testing Results
Applications on Provider
Performance Testin ieati
9 Application Application _
Implementation with Analysis of Test
Riverpod Performance Testing Results
Related Study on Riverpod \ /
\ / Application

Figure 1. Research Methodology

Literature Review

The literature review phase is carried out to study the sources and materials needed to
conduct research. This analysis of literature and study results is done to identify the factors that
affect performance or the performance metrics like CPU utilization, memory usage, and
execution time. The literature review also supports the design of test scenarios and the
selection of tools such as Snapdragon Profiler and Flutter DevTools. Additionally, it justifies the
choice of a movie catalog application as a testing medium, given its simplicity, scalability, and
common Ul and data interaction patterns in Flutter apps.

Application Development

The application development process starts with gathering requirements to define the
application’s needs. This research aims to show how different state management approaches
affect Flutter application performance. To ensure an objective comparison, both app versions
will have same appearances and functionalities, differing only in state management
implementation.

Previous studies on state management performance have often utilized movie catalog
applications as test subjects. For example, the MovDB application [9] and ShowTime application
[4] provide relevant benchmarks. These applications demonstrate that the movie catalog
format is suitable for testing various performance aspects, as their structure allows for easy

192

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

modification of the displayed movie data. This capability enables simulations of heavier
application loads and more complex scenarios by adjusting the volume of movie data shown.
Based on this context, the criteria for the new MovieDB application designed for state
management performance testing are as follows:
1. Multi-page Navigation
a. Movies Page: Displays a scrollable list of movies, featuring an AppBar that shows the
amount of displayed movies and popup button to adjust the quantity of the movies.
b. Search Page: Allows users to search for movies by title.
c. Settings Page: Allows users to toggle dark mode, affecting the entire application,
including the Movies and Search pages.
2. Remote API Calls
The application will implement remote API calls to fetch movie data. The TMDB AP],
specifically the Popular Movies endpoint, will be used to retrieve a list of currently popular
movies. This APl was selected for its ease of implementation and comprehensive
documentation, ensuring a fast data-fetching process, which is critical for testing.

Data Collection

Performance testing is essential for assessing application performance during software
development. This involves evaluating the speed, effectiveness, and resource utilization of
software and hardware [13]. Based on previous research, several performance evaluation
metrics are relevant for assessing state management efficiency in Flutter applications:

1. CPU Utilization
CPU utilization means the percentage of CPU resources consumed by the application. CPU
performance may be affected by the efficiency of state management. Complex or inefficient
management can lead to excessive overhead, increasing CPU resource usage. Optimizing
state management is essential for maintaining good application performance [9].

2. Memory Usage
Memory usage refers to the amount of memory consumed by the application. Inefficient
state management can negatively impact memory usage. Poor management of state data
may result in excessive memory consumption or unnecessary data accumulation. Selecting
an efficient state management method is vital for optimizing memory [9].

3. Execution Time
Execution time is the duration from when a user interaction triggers a state update to when
new widgets are rebuilt. State management influences execution time, state updates can
be time-consuming if not well organized, potentially increasing execution time [14].

The Performance Metrics will be evaluated across three test scenarios, this experimental
scenario is structured based on the factors identified in the literature analysis, as detailed in
Table 1 below:

Table 1. Test Scenario

Scenario ID Description
Sc-01 Scrolling the movie cards on the movie page from first to last.
Sc-02 Searching a movie with the keyword "dark” and scrolling the results.
Sc-03 Changing the app theme (light/dark) and navigating to Search page and
Movie page

Data Analysis
Analysis of test data involves interpreting results from experiments to draw conclusions
[15]. The analysis of test data in this study involved categorizing application complexity by data

193

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

volume into three levels: Low Data (1,000 records), Medium Data (5,000 records), and High
Data (10,000 records). These varying data volumes illustrate the increasing complexity of the
application, allowing for an evaluation of how state management performs as the data volume
increases and the application becomes more complex. Each scenario is tested 20 times across
both application versions. The experiment was conducted on a Xiaomi Mi 8 with Android 15,
6GB RAM, and a Qualcomm Snapdragon 845 processor. Performance monitoring tools,
including Snapdragon Profiler and Flutter DevTools used for measuring performance data. The
data analysis process consists of two stages:
1. Average per Testing Scenario
The values from the 20 runs of each scenario are averaged. The graph will illustrate the app
performance of each scenario (Sc-01, Sc-02, Sc-03) across different data volumes,
facilitating comparative analysis.
2. Overall Average Based on Data Volume
All averaged data from the three scenarios are combined to calculate the overall average
for each metric based on data volume. This stage identifies the most efficient state
management method for small, medium, or large data scales, forming the basis for
conclusions regarding the optimal state management approach for a flutter application.

The analysis will provide interpretations of the quantitative data from the tests, leading
to recommendations for Flutter developers on selecting the optimal state management
approach. Key findings will address the research objectives, determining which method is more
efficient overall. These insights will guide flutter developers in making informed choices for
different application scales.

RESULTS AND DISCUSSION
Aplication Development

1. MAIN
main.dart « MultiProvider / ProviderScope Initialization
Application Entry Point & State Management Setup

2. PRESENTATION (UI Layer)

main_screen.dart movie_page.dart search_page.dart setting_page.dart
Bottom Navigation Bar Movie List Search Feature Theme Settings

3. PROVIDER (State Management & Business Logic)

navigation_provider movie_provider search_provider theme_provider
Page Indexing Movie List State Search & Filter Logic Theme Management
4. MODEL 5. REPOSITORY
movie_model.dart movie_repository.dart
Data Structure: id, title, overview, rating, posterPath Data Access Logic & API Request

Figure 2. MovieDB Application Architecture

The MovieDB application features a modular clean architecture with clear separation of
concern. The architecture consists of five key components:

194

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

1. main: Contains the entry point (main.dart), initializing the app with runApp() and global
configurations like theme and routing.

2. presentation: Serves the user interface with various pages and widgets.

3. model: Stores data structures, like the Movie model.

4. repository: Acts as the data source, providing static movie data from TMDb API.

5. provider: Manages state and application logic, bridging data to the Ul and vice-versa.
Popular Movies (1000) § Popular Movies (100(Show 2D Inovee Search Movies Settings

" show 100 movies =

Show 200 movies
raises the stakes in his

n o
P

3 e With the help of Lt. Ji
The Lost Princess "MWR? The Lost Prince Show 500 movies h the help of m

nd
v n "
ca y hey m ca g
o
v
or
Gordon and District Attorney Harvey Dent,
Rating: 6.44 Rating: 6,44
el w: After an Ayahua ision Overview: After an Show 1000 movies
tran im 10 & haunted castle, Alec o im 1o ¢
meets Hanna who tales him the story of h. meets Hanna who ‘ The Dark Knight Rises
Show 2500 movies ating
e
ive
bility fc

h of District

Demon Slayer: Kimetsu no Yaiba
Infinity Castle
Rating: 7.813

Demon Slayer: Show 5000 movies
Infinity Castle
Rating: 7.813 Show 10000 movies

y Castle, Where
the Hashira face terr|

War of the Worlds War of the Worlds
Rating: 4.3 Rating: 4.3

Overview: Will Radford is a top analyst for Overview: Will Radford is a top analyst for
Homela
thraste 1

& Fifty Shades Darker

Rating: 6,479

Q o by Q <]

Movie ! M

Figure 3. MovieDB User Interface Implementation

Data Collection

Performance testing was conducted to evaluate the efficiency of the state management
libraries, across various application resource metrics. For CPU utilization and memory usage,
tests were conducted by building application in release mode and then using the Realtime
Performance Analysis feature of the Snapdragon Profiler. Meanwhile, execution time were
measured by building application in profile mode to use logging features in Flutter DevTools.

CPU Utilization and Memory Usage

CPU utilization is recorded as a percentage (%), while memory usage is measured in
bytes and then converted to megabytes (MB). The performance data was exported to CSV
format for analysis. To calculate averages for both metrics, the start and end timestamps of the
test are identified, and the values between these timestamps are averaged for each scenario.

iew Window Tools Help

% options

Figure 4. Snapdragon Profiler Realtime Performance Analysis

CPU Utilization % 5 = Realti

Execution Time

Execution time were measured using Flutter DevTools. Execution time is determined by
recording timestamps at the beginning and end of the code segment being evaluated. The
difference between these timestamps is calculated to express the total duration in seconds.

195

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

Figure 5. Flutter DevTools Logging

Data Analysis

This section assesses the performance of Provider and Riverpod in a Flutter application.
Key metrics such as CPU Utilization, Memory Usage, and Execution Time are analyzed across
varying data volumes to identify efficiency differences.

Cpu Utilization Analysis

Average CPU Utilization Provider and Riverpod Average CPU Utilization Provider and Riverpod Average CPU Utilization Provider and Riverpod

W Provider M Riverpod W Provider W Riverpod W Provider W Riverpod
15 15 20
15

1444 =
17.66
10
= g
5 .
Ly —) ik — Uy — | S ﬁi
Sc01 Sc01 Sc-02 Sc-03

Sc-01 Sc-02 Sc-03 Sc02 Sc03

s

«

CPU Utilization (%)

CPU Utilization (%)
s

CPU Utilization (%)

°

Test Scenario Test Scenario Test Scenario

Figure 8. CPU Utilization Measurement Results

For a data volume of 1,000, CPU utilization varied across scenarios, with Provider
peaking at 13.41% in Sc-01 compared to Riverpod 12.02%. In Sc-02, both libraries showed
lower CPU utilization around 5%, with Provider at 5.08% and Riverpod at 5.00%. During the Sc-
03, Riverpod consumed more CPU at 6.66% compared to Provider's 5.46%. As the data volume
increased to 5,000, CPU utilization rise, especially in Sc-01, where Provider reached 14.44% and
Riverpod 14.53%. In Sc-02, Riverpod's CPU usage increased slightly to 5.46%, while Provider
was at 5.12%. At a volume of 10,000, CPU utilization peaked at 17.66% for Provider and 16.79%
for Riverpod in Sc-01, with both libraries maintaining similar values in Sc-02, 5.69% for Riverpod
vs. 5.82% for Provider and Sc-03 5.42% for Provider and 5.46% for Riverpod.

Overall Average CPU Utilization Provider and Riverpod
J Bett

M Provider W Riverpod

CPU Utilization (%)
e N & o o

1000 5000 10000

Data Volume

Figure9. CPU Utilization Comparison (%)

The overall average CPU utilization shows very close values across all data volumes,
with differences between the two state management libraries around 0.1-0.2%. Overall, there
is no significant difference in CPU usage metrics, indicating that both architectures manage
state changes with nearly equal efficiency despite minor variations. At 1,000 data, Provider
averaged 7.98% while Riverpod was at 7.89%. At 5,000 data, Provider was at 8.37% compared
to Riverpod's 8.53%. Finally, at 10,000 data, Provider reached 9.59% versus Riverpod's 9.36%.
These small fluctuations may be attributed to architectural differences, as Provider uses

196

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

BuildContext while Riverpod uses WidgetRef, potentially reducing state tracking load. Overall,
both Provider and Riverpod demonstrate comparable CPU utilization efficiency.

Memory Usage Analysis
Average Memory Usage Provider and Riverpod Average Memory Usage Provider and Riverpod Average Memory Usage Provider and Riverpod
W Provider W Riverpod W Provider W Riverpod W Provider W Riverpod

Memory Usage(MB)

Memory Usage(MB)
g B

Memory Usage(MB)

Figure 60. Memory Usage Measurement Results

For a data volume of 1,000, memory usage ranged between 200-220 MB. In Sc-01,
Provider used 204.27 MB, while Riverpod consumed 201.30 MB. In Sc-02, Provider increased
to 211.98 MB, with Riverpod slightly higher at 215.65 MB. During Sc-03, Provider had the
highest memory usage at 223.23 MB, compared to Riverpod 205.66 MB. As the volume
increased to 5,000, Provider memory usage rise to 220.30 MB and Riverpod to 215.83 MB in
Sc-01, while Sc-02 showed nearly equal usage around 213-214 MB for both libraries. In Sc-03,
memory usage decreased to 207.73 MB for Provider and 196.24 MB for Riverpod, with Provider
still consuming more memory. At a volume of 10,000, Provider's memory usage was 228.78 MB
in Sc-01 compared to Riverpod 214.52 MB, and in Sc-02, Provider used 206.87 MB versus
Riverpod 202.33 MB. Overall, Riverpod demonstrated better memory efficiency.

Overall Average Memory Usage Provider and Riverpod

wer is Better

M Provider W Riverpod
250

200
150

100

Memory Usage (MB)

50

0

1000 5000 10000

Data Volume

Figure 1. Memory Usage Comparison (MB)

The overall average memory usage indicates that Riverpod consistently consumes
slightly less memory than Provider. For instance, at a volume of 10,000 data points, Provider
used 213.83 MB while Riverpod only used 202.71 MB, showing a difference of about 5%. A
similar pattern appears at 1,000 and 5,000 data points. This difference suggests that
applications built with Riverpod are more memory-efficient. Specifically, at 1,000 data points,
Provider consumed 213.16 MB compared to Riverpod 207.54 MB, and at 5,000, Provider was
at 213.94 MB while Riverpod was 208.71 MB. Riverpod efficiency comes from its use of
autoDispose, which automatically releases unused states. In contrast, Provider relies on
InheritedWidget and BuildContext, which can result in longer retention of states in memory.
This makes Riverpod the more efficient choice for managing memory usage.

197

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

Execution Time Analysis

Average Execution Time Provider and Riverpod Average Execution Time Provider and Riverpod Average Execution Time Provider and Riverpod

W Provider W Riverpod W Provider W Riverpod W Provider W Riverpod

Execution Time (S)
o N & o ®

86 0,55,
Sc-01 Sc-02 Sc-03 Sc-01 Sc-02 Sc-03 Sc-01 Sc-02 Sc-03

Test Scenario Test Scenario Test Scenario

Figure 72. Execution Time Measurement Results

For a data volume of 1,000, execution time was relatively quick, with Sc-01 taking 1.35
seconds for Provider and 1.41 seconds for Riverpod. In Sc-02, execution times were short, at
0.53 seconds for Provider and 0.45 seconds for Riverpod, showing Riverpod advantage. For Sc-
03, both libraries were nearly identical, taking around 0.54 seconds. As the volume increased
to 5,000, Sc-01 has longer execution times of 6.56 seconds for Provider and 6.61 seconds for
Riverpod, while Sc-02 rise to 0.86 seconds for Provider and 0.78 seconds for Riverpod. In Sc-
03, both libraries performed similarly. At a volume of 10,000, execution times extended to 8.76
seconds for Provider and 8.80 seconds for Riverpod in Sc-01, while Sc-02 took 0.93 seconds
for Provider and 0.86 seconds for Riverpod, with Sc-03 both remaining around 0.56 seconds

Overall Average Execution Time Provider and Riverped

M Provider W Riverpod

Execution Time (s)

1000 5000 10000

Data Volume

Figure 13. Execution Time Comparison (s)

The overall average execution time for both approaches across various data volumes is
nearly identical. For 1,000 data, both libraries took 0.81 seconds. At 5,000 points, Provider was
at 2.66 seconds and Riverpod at 2.65 seconds, and at 10,000 points, Provider took 3.42 seconds
while Riverpod took 3.41 seconds. The differences are minimal, around 0.01 seconds, are
practically insignificant. This similarity is reasonable since the application logic and data
processing remain the same regardless of the state management method. Riverpod may have
slight overhead from accessing global providers via WidgetRef, while Provider uses Flutter built
in BuildContext, but these differences are negligible. With Flutter's compiler optimizations,
both architectures achieve nearly identical runtime efficiency. Therefore, it can be concluded
that execution time is not significantly affected by the choice of state management library,
supporting the finding that both methods provide equivalent runtime performance.

CONCLUSIONS AND SUGGESTIONS

In Flutter application development, selecting a state management library can
significantly impacts performance. This study compared Provider and its successor, Riverpod,
focusing on performance metrics. Overall, both libraries demonstrated similar performance.
CPU utilization showed minimal variation, averaging around 0.1-0.2% across all scenarios, while
execution times differed by only 10-30 milliseconds. Riverpod had an advantage in memory

198

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

usage, consuming 3-6% less memory, especially with larger data volumes. Based on the
findings, Riverpod is recommended for new Flutter projects needing easier state management,
greater memory efficiency, and scalability. However, for existing projects using Provider,
migration for minor performance differences is unnecessary. Ultimately, the choice of library
should depend on each project's specific needs. If memory efficiency and modern architecture
are priorities, Riverpod is ideal, but Provider remains a valuable option. Future research should
test the performance of additional state management libraries, such as GetX, BLoC, or MobX,
to identify optimal solutions for various Flutter contexts. Additionally, testing on iOS platforms
is recommended to assess performance in different ecosystems.

REFERENCES

(1] Endah Puspitarini, Roudhotul Hanifa, and Faridatun Nadziroh, “Rancang Bangun Aplikasi
Absensi Mahasiswa Pada Platform Android,” Journal of Technology and Informatics (JoTl),
vol. 2, no. 1, pp. 48-55, Oct. 2020, doi: 10.37802/joti.v2i2.114.

[2] Nur Moniroh and Rafiq Chasnan Habibi, “Implementation of UAT and Blackbox Methods
in the Android-Based Prayer Collection and News Portal Application of PP El-Bayan,”
Journal of Technology and Informatics (JoTl), vol. 7, no. 1, pp. 76-89, Apr. 2025, doi:
10.37802/joti.v7i1.884.

[3] M. Zulistiyan, M. Adrian, Y. Firdaus Arie Wibowo, and J. Telekomunikasi, “Performance
Analysis of BLoC and GetX State Management Library on Flutter,” Journal of Information
System Research (JOSH), vol. 5, no. 2, pp. 583-591, 2024, doi: 10.47065/josh.v5i2.4698.

(4] l. Husain, P. Purwantoro, and C. Carudin, “Analisis Performa State Management Provider
Dan GetX Pada Aplikasi Flutter,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no.
2, pp. 1417-1422, Sep. 2023, doi: 10.36040/jati.v7i2.6867.

[5] M. Abdul Hakeem, M. Abdul Razack Maniyar, and M. Khalid Mubashir Uz Zafar,
"Performance Testing Framework for Software Mobile Applications,” Int J Innov Res Sci
Eng Technol, vol. 7, pp. 6225-6234, 2020, [Online]. Available: www.ijirset.com

[6] AppDynamics, “The App Attention Index 2019: The Era of the Digital Reflex,”
AppDynamics. Accessed: Oct. 11, 2024. [Online]. Available:
https://www.appdynamics.com/blog/news/app-attention-index-2019/

[7]1 D.Slepney, “State Management Approaches In Flutter,” South-Eastern Finland University
of Applied Science, 2020. Accessed: Oct. 11, 2024. [Online]. Available:
https://www.theseus.fi/bitstream/handle/10024/355086/Dmitrii_Slepnev.pdf

[8] Flutter Team, “State class - widgets library - Dart APL." Accessed: Jul. 14, 2025. [Online].
Available: https://api.flutter.dev/flutter/widgets/State-class.html

(9] R.R. Prayoga, G. Munawar, R. Jumiyani, and A. Syalsabila, “Performance Analysis of BLoC
and Provider State Management Library on Flutter,” Jurnal Mantik, vol. 5, no. 3, pp. 1591-
1597, 2021, Accessed: Oct. 11, 2024. [Online]. Available:
https://iocscience.org/ejournal/index.php/mantik/article/view/1539

[10] pub.dev, “Search results for state management (sorted by downloads).” Accessed: Jul.
14, 2025. [Online]. Available:
https://pub.dev/packages?q=state+management&sort=downloads

[11] Mgs. M. F. Abdillah, I. L. Sardi, and A. Hadikusuma, “Analisis Performa GetX dan BLoC
State Management Library Pada Flutter untuk Perangkat Lunak Berbasis Android,”
LOGIC: Jurnal Penelitian Informatika, vol. 1, no. 1, p. 73, Sep. 2023, doi:
10.25124/logic.v1i1.6479.

199

Jonathan Aditya Puryanto, et al/ Journal of Technology Informatics (JoTl), Vol.7, No.2, October 2025, Page 190-200

[12]

[13]

[14]

[15]

M. Hafid, N. Azis, A. Pinandito, |. Sartika, and E. Maghfiroh, “Analisis Perbandingan
Penggunaan State Management pada Aplikasi Ditonton menggunakan Framework
Flutter,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 1, pp.
148-153, 2023, Accessed: Oct. 11, 2024. [Online]. Available: https://j-
ptiik.ub.ac.id/index.php/j-ptiik/article/view/12124

M. A. Putri, H. N. Hadi, and F. Ramdani, “Performance testing analysis on web application:
Study case student admission web system,” in 2017 International Conference on
Sustainable Information Engineering and Technology (SIET), IEEE, Nov. 2017, pp. 1-5. doi:
10.1109/SIET.2017.8304099.

A. A.D. Jatnika, M. A. Akbar, and A. Pinandito, “Comparative Analysis of the Use of State
Management in E-commerce Marketplace Applications Using the Flutter Framework,”
Journal of Information Technology and Computer Science, vol. 8, no. 2, pp. 111-124, Aug.
2023, doi: 10.25126/jitecs.202382557.

K. Afandi, M. H. Arief, N. Faizatul Laily, and D. Maulana Nugroho, “Analisis Performa
Akademik Mahasiswa Menggunakan Social Network Analysis (Studi Kasus: Prodi Bisnis
Digital Universitas dr. Soebandi),” Journal of Technology and Informatics (JoTl), vol. 5, no.
2, pp. 64-69, Apr. 2024, doi: 10.37802/joti.v5i2.514.

200

