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Article Information Abstract:  

 

In a context where connected medicine requires increasingly 

explainable, accurate, and responsive systems, this paper presents 

an applied experimental research focusing on the development and 

evaluation of a hybrid intelligent assistant for healthcare data 

fusion. The study is based on the parallel combination of two data 

paradigms: classical tabular structures and their ontological 

equivalent. Using an intelligent assistant, we simultaneously query 

a medical dataset on diabetes in tabular form and the same dataset 

translated into an OWL ontology that can be queried using 

SPARQL. The aim is to demonstrate that the synchronised 

combination of these two models not only provides a more 

complete response but also one that is better contextualised and 

clinically exploitable. The research follows an experimental 

methodology, involving the implementation, testing, and 

comparative evaluation of both models on 300 questions classified 

by increasing complexity (simple, complex, and very complex). The 

results reveal a relevance rate above 99%, with an average 

response time suited to medical use. This work highlights the 

potential of hybrid architectures in connected health and paves the 

way for new decision-making assistants that fully exploit the 

semantic richness of medical knowledge. 
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INTRODUCTION  

Diabetes represents one of the most pressing public health challenges of the 21st 

century. In 2023, an estimated 537 million adults worldwide had diabetes, a figure that is rising 

steadily, with projections exceeding 640 million by 2030 [1]. The majority of cases (over 90%) 

are of type 2 diabetes, which is largely associated with behavioural and environmental factors 

[2]. In sub-Saharan Africa, under-diagnosis rates exceed 60%, seriously compromising patients' 

quality of life [3]. Despite the emergence of digital tools, management remains hampered by 

the fragmentation of medical data and the absence of integrated intelligent systems capable 

of providing clinicians with effective assistance [4]. In this context, connected medicine opens 

up new prospects for personalised monitoring and clinical decision support [5]. However, this 

transformation requires tools capable of exploiting heterogeneous data tabular, textual, and 

semi-structured and of reasoning beyond simple factual extraction. Solutions based solely on 

the analysis of Excel files or SQL databases are limited in their ability to capture the semantic 

complexity inherent in medicine [6]. Conversely, symbolic approaches based on medical 

ontologies, such as SNOMED CT or OMOP, enable explicit reasoning, but remain difficult to 

use for clinicians who are not computer scientists [7]. Recent literature explores hybrid 

approaches, and models based on Knowledge Graphs have shown their effectiveness in 

federating and structuring complex clinical data [8]. 

Problem statement. Despite these advances, there is still a lack of integrated systems 

that can simultaneously exploit both tabular and ontological representations of medical 

knowledge in an explainable and clinically usable way. Current approaches either focus on data 

structure without semantic reasoning or rely on ontologies that remain too complex for real 

clinical environments. This fragmentation prevents the development of intelligent systems 

capable of combining speed, semantic depth, and interpretability. 

Research gap. While the Federated Virtual Knowledge Graph (FVKG) paradigm [9,10] 

has demonstrated the technical feasibility of linking tabular and RDF data through mappings, 

there is little empirical evidence of hybrid systems capable of performing parallel reasoning 

and delivering explainable medical insights. No prior study has provided a local, operational 

implementation bridging tabular querying and ontological inference in a unified medical 

assistant. 

Research questions and urgency. This work therefore addresses three key questions: 

(1) How can a hybrid assistant simultaneously query tabular and ontological data to generate 

accurate and clinically explainable results? (2) To what extent does semantic fusion improve 

the relevance and response time of medical queries compared to isolated models? (3) How can 

such a system contribute to building trustworthy, locally deployable intelligent assistants for 

connected healthcare? The urgency of this research lies in the growing need for interpretable 

and reliable AI in medical decision support, particularly in resource-limited settings where 

clinicians require transparent tools that combine speed and comprehension. 

To address this gap, our study proposes a hybrid medical assistant capable of querying, 

in parallel, two sources derived from the same dataset: an Excel table representing the clinical 

data of diabetic patients and an OWL ontology representing the same dataset in a semantic 

model. The GPT engine merges both responses to produce a unified, contextualised, and 

explainable synthesis. The case study involves 100 patients with various forms of diabetes and 

300 medical questions (100 simple, 100 complex, 100 very complex). The system achieves an 

overall accuracy of 99%, with average response times below six seconds. 

This performance is supported by three complementary components: a tabular pipeline 

(via Pandas) ensuring rapid access to structured data, an ontological pipeline (via SPARQL) 
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enabling complex semantic queries, and a GPT-based fusion engine that orchestrates the 

synthesis of both responses into a coherent medical interpretation. This model builds upon 

previous work demonstrating the benefits of paradigm fusion [11,12], leverages recent 

structures such as Personal Knowledge Graphs [13], and applies lightweight ontologies in a 

local context [14]. Finally, it is grounded in a rigorous evaluation framework derived from 

ontology engineering and medical artificial intelligence research [6]. By combining these 

technologies, our contribution shows that parallel, local, and explainable semantic fusion can 

not only optimise diabetes management but also establish the foundations for a new 

generation of intelligent, human-centred medical assistants. 

 

STATE OF THE ART 

Connected medicine uses artificial intelligence (AI) systems to interpret a variety of 

medical data, with the aim of optimising care and diagnosis. There are three main areas of 

research: models based on tabular data, ontologies and Knowledge Graphs, and hybrid 

architectures that combine these two paradigms. Structured records (CSV, EHR) fed by 

supervised models (decision trees, deep networks) show solid results for predicting 

complications associated with diabetes. However, their lack of capacity to provide semantically 

rich explanations limits their usefulness in clinical practice [15]. Ontologies (SNOMED CT, 

OMOP, LOINC) and Knowledge Graphs facilitate interoperability and allow expert reasoning. 

For example, the study by Spoladore et al (2024) in Artificial Intelligence in Medicine 

demonstrates the positive impact of ontology-based decision-making systems for nutritional 

and glycaemic monitoring of diabetic patients [16]. 

On the other hand, Botha et al (2024) explore through an in-depth review the impact 

of AI models on patient rights and safety, highlighting key ethical challenges [17]. Wang et al.'s 

(2023) work with MediTab strengthens tabular predictions through semantic enrichment [18]. 

SeFNet (Woźnica et al., 2023) introduces a technical framework for aligning tabular and 

semantic features to support machine learning ontology integration [19]. 

Complementarily, Afandi et al. (2024) highlight the interpretive dimension of data relationships 

using network analysis, reinforcing the role of relational structures in hybrid knowledge 

systems. The approach of Lepetit Ondo et al. 2025 enables transparent federation of tabular 

and RDF data, promoting confidentiality and consistency via SPARQL [20]. In the context of 

diabetes, Rad et al. (2024) integrate digital twins and patient-centric graphs, improving real-

time blood glucose monitoring [21]. Finally, Qin et al (2025) have developed a diabetic Q&A 

system combining Neo4j and LLM, achieving over 85% accuracy for entity recognition and 

almost 89% for intention classification [22]. Challenges and limitations 

- Semantic alignment: the robustness of SPARQL mappings remains a major challenge, 

particularly for complex alignments [6]. 

- Answer fusion: current hybrid systems are often limited to juxtaposition or weighting. 

The use of an API based on an LLM model such as GPT to generate a unified and explanatory 

synthesis remains largely unexplored. 

- Clinical explicability: the construction of a traceable meta-analysis, which documents 

the origin and justification of responses, is still largely underexplored. 

Table 1 below summarises these features, highlighting their main objectives, their 

respective strengths and their structural and functional limitations. 
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Table 1. Comparison of tabular, ontological and hybrid approaches in healthcare decision 

support systems 

Model Objectives Forces Limits 

Tabular Prediction, speed, 

simplicity 

Reliable, well controlled Not very semantic, 

limited explicability 

Ontological Inference, consistency, 

transparency 

Formal reasoning, 

interoperability 

Complexity, limited 

clinical adoption 

Hybrid Greater relevance & 

confidentiality 

Synergy of the advantages of 

the two paradigms 

Complex alignments, 

immature fusion 

Our proposal is part of this dynamic, a medical assistant for diabetics, querying tabular 

and ontological sources in parallel, and merging the answers via an API based on LLM to offer 

contextualised, explained and clinically validated results. 

 

METHODS 

a) Type of research 

This study is an applied experimental research combining elements of system design, 

semantic modelling, and empirical evaluation. It aims to build and assess a hybrid intelligent 

assistant for connected medicine through a real clinical use case on diabetes management. The 

approach follows a design–build–evaluate paradigm typical of computer science and 

information systems engineering. 

b) Overview 

  Our methodology is based on the construction, implementation, and evaluation of a 

hybrid intelligent assistant capable of querying, in parallel, two types of data structures 

representing the same medical knowledge: 

(1) a tabular dataset (Excel file extracted from an electronic medical record on diabetes), and 

(2) an ontology derived from the same data source. 

The main objective is to evaluate, in a comparative and combined way, the ability of each data 

representation to produce relevant, explainable, and rapid answers to clinical questions 

expressed in natural language. 

c) Methodological steps 

The proposed architecture is modular and hybrid, combining heterogeneous sources 

of medical data (structured files and ontologies) and semantic reasoning capabilities with a 

generative AI engine. 

It is based on three major functional areas: 

(1) Semantic knowledge centre: the knowledge base is modelled in the form of an 

ontology designed in Protégé, and used via Apache Jena for dynamic SPARQL queries. It is 

generated from a dataset of patients suffering from diabetes, taken from structured electronic 

records (EHR). 

(2) Interface and interpretation centre: users (e.g. healthcare professionals) interact via 

a user interface (UI) connected to an API incorporating an LLM model. This API provides natural 

language processing, semantic reformulation of queries and explanatory merging of responses 

from the two sources. 

(3) Tabular data centre: the initial formats (XLSX, CSV, XML, JSON) feed both the direct 

tabular structure and the ontology, guaranteeing the consistency of the content analysed. 
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Figure 1. General architecture of the hybrid medical decision support system 

 

1. Initiation phase: data collection and conceptual framework 

  The dataset used in this research was collected at the City Medical Laboratory in 

Kinshasa, and includes detailed information on diabetic patients, such as demographic 

attributes (age, sex, weight), medical indicators (blood glucose, complications, treatments), and 

diagnostic history. From a conceptual perspective, the framework relies on knowledge 

representation and semantic integration theories, aiming to bridge the gap between structured 

data and symbolic reasoning. The hypothesis underlying the experiment is that parallel 

querying of tabular and ontological representations improves interpretability and performance 

in medical question answering. 

2. Development phase: architecture design 

  The proposed architecture is modular and hybrid, combining heterogeneous sources 

of medical data (structured files and ontologies) with semantic reasoning capabilities 

orchestrated by a generative AI engine. It is composed of three functional layers: 

a) Semantic knowledge centre : The knowledge base is modelled as an OWL ontology 

designed in Protégé and hosted in Apache Jena for SPARQL queries. It is generated from 

the patient dataset derived from electronic health records (EHR). 

b) Interface and interpretation centre : Users (clinicians, researchers) interact via a user 

interface (UI) linked to an API that integrates a Large Language Model (LLM). This API 

manages natural language understanding, reformulation, and semantic fusion of answers. 

c) Tabular data centre : Original clinical data (Excel, CSV, JSON) are accessed directly through 

Pandas to ensure structural consistency between the relational and ontological sources. 

3. Implementation phase 

  The hybrid assistant was developed in Python 3.10, using rdflib, pandas, openai, and 

matplotlib for processing and visualization. The ontology was created in Protégé, and semantic 

queries were executed via Fuseki Jena. The interface was implemented in Streamlit, enabling 

interactive input of medical questions and real-time display of responses. 
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The GPT-based fusion engine synchronises both data flows (tabular and semantic) to generate 

a unified, explainable answer. This design allows seamless interaction between local data and 

semantic reasoning without external dependencies. 

4. Evaluation phase 

To evaluate system performance, 300 medical questions were formulated and validated 

by an endocrinology expert. These questions were classified into three cognitive complexity 

levels (simple, complex, and very complex). Three main metrics were used for quantitative 

evaluation: 

a) Response time (seconds) – measures latency between question and answer; 

b) Relevance rate (%) – proportion of answers judged correct by medical assessors; 

c) Response rate (%) – number of valid answers generated versus total questions asked. 

Results showed an average response time of under six seconds and an accuracy rate of 

99%, confirming the efficiency of semantic–tabular fusion for medical reasoning. 

 

Ontological transformation 

The transformation of the tabular set into an ontology took place in several phases: 

(a) Identification of concepts (Patient, Treatment, Diabetes, Complication, etc.), 

(b) Creation of classes and properties (e.g. aForTreatment, aDiabetes, aComplication), 

(c) Automatic generation of RDF triplets from Excel rows. 

 

How the assistant works 

The intelligent assistant is structured into three parallel modules. Table 2 presents the 

three fundamental modules of the system: an NLP parser in charge of natural language 

understanding, a tabular engine for direct querying of structured files, and an ontology engine 

exploiting the inference capabilities of SPARQL on an OWL ontology. These modules work 

simultaneously to enrich the final response. 

 

Table 2. Main functions of processing modules in hybrid architecture 

Module                          Main function 

1. NLP Analyser             Natural language processing, extraction of key entities 

2. Tabular motor           Direct query of Excel data via pandas 

3. Ontology Engine       Natural language processing, extraction of key entities 

 

Classification of questions 

Based on the literature in Semantic QA and Cognitive Load Theory [23,24], the 

questions have been classified into three levels. Table 3 shows three levels of difficulty 

applicable to user queries: simple questions (direct extraction), complex questions (crossing of 

criteria), and very complex questions (requiring multi-level inferences). This hierarchy gives a 

better idea of the hybrid system's processing capabilities. 

 

Table 3. Typology of questions according to their cognitive complexity 

Type of question       Example                                                                           Complexity 

Simple                       ‘What is patient X's weight?’                                           Direct extraction 

Complex                   "Type 2 patients with blood glucose >180 mg/dL          Cross-referencing criteria 

Very complex            ‘% of patients with type 2 diabetes + complications      Multi-level reasoning 

                                                              + weight > 100 kg’.                              
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In order to dynamically guide processing, each question is classified according to a 

complexity score calculated on the basis of its linguistic and semantic characteristics. The 

following formula was used: 

 

C(q) = α. len(q) + β. med(q) + γ. logic(q) 

Where: 

 «len(q) denotes the length of the question in number of words, » 

«med(q) corresponds to the number of medical concepts detected, » 

«logic(q) reflects the logical depth (implicit inference levels), » 

«𝛼, 𝛽, 𝛾 are empirical weights adjusted during the learning phase. » 

This score enables the fusion module to be dynamically calibrated to give preference 

to certain sources depending on their complexity. 

The merging of responses from the two sources (tabular and ontological) is based on 

adaptive weighting: 

𝑅𝑓 = 𝜆. 𝑅𝑡 + (1 − 𝜆). 𝑅0 

Where: 

«𝑅𝑓 is the final confidence score» 

« 𝑅𝑡  is the score of the tabular answer» 

« R0  is that of the ontological answer» 

« λ ϵ [0, 1]    is an adaptive coefficient adjusted according to the nature of the question» 

This mechanism ensures that sources complement each other, while taking account of 

the context in which they are queried. 

 

Evaluation protocol 

We proposed a sample of 300 questions corrected and validated by an expert in devil 

management (100 of each type), submitted to our system 

For each question, we measured : 

a. Response time (in seconds), 

b. the relevance of the answer (correct, partial, incorrect), 

c. explanatory capacity (justification of the answer). 

A binary scoring system (1=correct, 0=incorrect) was used to objectify the results. [25] 

 

Metrics used 

Table 4 shows the three key indicators used for the evaluation: average response time, 

relevance rate (accuracy of responses according to the evaluators), and response rate (ability 

of the system to produce a response). These measures enable a rigorous comparative analysis 

of the performance of the different modules involved. 

 

Table 4. Main metrics used to assess the system 

Indicator                            Description 

Average time                     Time between question asked and answer received 

Relevance rate                   Percentage of answers deemed correct by assessors 

Response rate                    Percentage of questions for which an answer was produced  

 

Technological tools 

1. Python 3.10 with pandas, rdflib, openai, matplotlib 

2. Protégé for OWL modelling 
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3. Google Colab for distributed testing 

4. Fuseki Jena for ontology hosting 

 

RESULTS AND DISCUSSION 

1. Initiation: Data and conceptual preparation 

  The dataset used for the experiment consisted of 100 diabetic patients, each described 

by 25 attributes extracted from electronic medical records (EHR). The data were preprocessed 

to ensure consistency between the tabular and ontological versions. Each variable in the Excel 

file (age, glucose level, treatment, complications, etc.) was semantically mapped to a 

corresponding concept in the ontology using Protégé. This alignment ensured a one-to-one 

correspondence between factual and semantic representations, establishing a coherent 

experimental foundation. 

2. Development: Architecture validation 

  The architecture designed during the methodological phase was implemented and 

validated as planned. The three main functional components the tabular module (Pandas), the 

ontological module (SPARQL/Jena), and the GPT-based fusion engine operated synchronously 

within the Python environment. This configuration successfully handled the exchange between 

structured data and the OWL reasoning layer. During testing, the system demonstrated stable 

performance with minimal resource consumption, validating the modular and hybrid nature of 

the proposed design. 

3. Implementation: Execution of the hybrid assistant 

  The implementation of our intelligent assistant relied on a user-friendly human–

machine interface (HMI), enabling clinicians and researchers to formulate queries in natural 

language. The interface, developed in Python via Streamlit, interacts with a backend consisting 

of the two parallel engines described above. When a question is entered, it is first analysed by 

an NLP module (OpenAI API), then simultaneously processed by both engines. The fusion 

engine merges and reformulates the responses into a coherent and clinically interpretable 

answer. The assistant was tested on 300 medical questions of varying complexity (simple, 

complex, and very complex), with real-time monitoring of accuracy and latency. 

 
Figure 2. Hybrid assistant user interface 
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4. Evaluation: Performance and discussion 

  Quantitative evaluation revealed that the assistant achieved an overall accuracy of 99%, 

even for highly complex queries involving multi-variable reasoning. The average response time 

remained below six seconds, demonstrating a balance between speed and interpretability. The 

tabular module contributed to fast retrieval, while the ontological module enhanced semantic 

precision. These complementary effects confirm that hybridisation improves both efficiency 

and clinical relevance. Qualitative analysis further showed that clinicians appreciated the 

transparency and traceability of explanations generated by the fusion engine, which supports 

explainable AI (XAI) principles in connected healthcare. From a theoretical perspective, these 

results validate the hypothesis stated in the Methodology: parallel querying of tabular and 

ontological representations enhances both accuracy and comprehension. This outcome 

strengthens the argument for integrating hybrid reasoning systems into medical decision-

making processes. 

Assessment of the system by question type 

The tests involved a set of 300 questions classified according to their cognitive 

complexity (simple, complex, very complex). Each type of question was formulated in relation 

to diabetes management. The aim was to compare response times, success rates and the 

relevance of the answers generated. 

                                         Table 5. Typology of questions according to their complexity 
Level of complexity          Sample question                                                                 System expectations 
Simple                                    How old is patient X?                                                        Direct extraction 
Complex                                Which patients have a high BMI and                         Cross-referencing criteria 
                                                   are on active treatment?          
Very complex                      Which untreated diabetic patients over                  Reasoning and inference 
                                                   the age of 50  have critical blood sugar levels?                 

 

Measured response time 

Table 6. Summary of response times for all questions 

Type of question               Average time (s)             Min. (s)        Max. (s)                  Écart-type 

Simple                               3.43                                 1.01                16.92                   Low 

Complex                            4.73                                 1.82                 9.23                    Moderate 

Very complex                    5.61                                  2.03                 11.67                  High 

 

 
Figure 3. Time curve for simple questions 
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Figure 4. Time curve for complex questions 

 

 
Figure 5. Time curve for very complex questions 

 

Relevance and response rate 

 

Table7. Analysis of the ontology's relevance component 

Complexity                  Response rate generated                    Relevance rate 

Simple                                100 %                                           100 %  

Complex                             100 %                                           100 %  
Very complex                      100 %                                           99 %  

 

 
Figure 6. Relevance graph for simple questions 
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Figure 7. Relevance graph for complex questions 

 

 
Figure 7. Relevance graph for complex questions 

 

  The experimental results obtained highlight the effectiveness of our hybrid approach, 

combining a tabular database and an ontology to query medical information in parallel. A 

comparative analysis of 300 questions revealed robust performance in terms of both the speed 

and relevance of responses. These results take on particular significance in the context of 

diabetes management, a chronic disease requiring a detailed understanding of patient profiles 

and treatment conditions that are often intertwined. The interest of our architecture lies 

essentially in its capacity for generalisation, its cognitive versatility and its intrinsic explicability. 

Unlike traditional systems that only use relational databases or simple AQ models, our solution 

simultaneously uses complementary structures. This combination enables the system to answer 

simple questions but also to resolve complex clinical cases involving multiple inferences. This 

work confirms what had already been theorised in recent approaches to the complementarity 

of heterogeneous knowledge structures in healthcare [15][18][16]. The results obtained, in 

particular the 99% relevance on very complex questions, are comparable or even superior to 

those of other recent systems based solely on knowledge graphs [26] [27]. Another highlight 

is the system's explanatory capacity. Thanks to the ontology engine, the answers provided are 

not just factual, but integrated into a comprehensible clinical logic. The reasoning can thus be 

traced and justified, boosting user confidence, particularly in critical areas such as diabetes 

monitoring or appropriate prescribing. 

In terms of limitations, however, we note that the algorithmic complexity increases with 

the degree of inference required, which can result in a slight latency (up to 11 seconds in some 
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cases). Future improvements could include (a) pre-indexing recurring queries, (b) streamlining 

dynamic SPARQL inferences, (c) or integrating semantic heuristics to shorten merge times. 

It would also be appropriate to extend the experiments to other chronic pathologies 

such as hypertension or cardiovascular disease, to confirm the portability of the approach. 

Finally, the system's ability to adapt to the natural language used in a variety of clinical contexts 

makes it a potential solution for integration into hospital environments, particularly in contexts 

with low human resources or telemedicine. 

 

CONCLUSIONS AND SUGGESTIONS 

  In a context where healthcare systems are faced with an explosion of data and 

increasingly complex clinical decisions, this article has proposed a hybrid approach based on 

the parallel fusion of two knowledge structures: tabular data and ontologies. Through the 

development of an intelligent assistant applied to the management of diabetes, we have 

demonstrated the relevance of this combination, both in terms of the accuracy of responses 

and their explicability. The experimental results are unequivocal: the system achieves a 99% 

relevance rate on very complex questions while maintaining reasonable response times, even 

in the presence of inference operations. This performance testifies to the robustness of the 

fusion engine, which effectively exploits the complementary nature of both paradigms to 

provide synthetic, contextualised, and clinically interpretable answers. More than just a 

technical prototype, this solution represents a proof of concept for localised, transparent, and 

user-oriented intelligent systems in healthcare, validating the potential of semantic fusion as a 

means to reconcile computational efficiency with interpretability and paving the way for the 

next generation of explainable and trustworthy medical assistants. Building upon this 

foundation, future research could focus on extending the hybridisation model to other chronic 

diseases, integrating it with clinical decision support systems and electronic health records 

(EHR) to enable real-time reasoning and continuous knowledge updates. Further studies may 

also enhance explainability through traceable reasoning mechanisms and conduct usability 

evaluations involving medical practitioners to assess acceptance, trust, and decision-making 

impact. Additionally, incorporating governance and provenance frameworks would reinforce 

ethical accountability and auditability, ensuring that future intelligent systems remain both 

technically robust and socially responsible within the evolving landscape of connected 

healthcare. 
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