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combination of these two models not only provides a more
complete response but also one that is better contextualised and
clinically exploitable. The research follows an experimental
methodology, involving the implementation, testing, and
comparative evaluation of both models on 300 questions classified
by increasing complexity (simple, complex, and very complex). The
results reveal a relevance rate above 99%, with an average
response time suited to medical use. This work highlights the
potential of hybrid architectures in connected health and paves the
way for new decision-making assistants that fully exploit the
semantic richness of medical knowledge.
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INTRODUCTION

Diabetes represents one of the most pressing public health challenges of the 21st
century. In 2023, an estimated 537 million adults worldwide had diabetes, a figure that is rising
steadily, with projections exceeding 640 million by 2030 [1]. The majority of cases (over 90%)
are of type 2 diabetes, which is largely associated with behavioural and environmental factors
[2]. In sub-Saharan Africa, under-diagnosis rates exceed 60%, seriously compromising patients'
quality of life [3]. Despite the emergence of digital tools, management remains hampered by
the fragmentation of medical data and the absence of integrated intelligent systems capable
of providing clinicians with effective assistance [4]. In this context, connected medicine opens
up new prospects for personalised monitoring and clinical decision support [5]. However, this
transformation requires tools capable of exploiting heterogeneous data tabular, textual, and
semi-structured and of reasoning beyond simple factual extraction. Solutions based solely on
the analysis of Excel files or SQL databases are limited in their ability to capture the semantic
complexity inherent in medicine [6]. Conversely, symbolic approaches based on medical
ontologies, such as SNOMED CT or OMOP, enable explicit reasoning, but remain difficult to
use for clinicians who are not computer scientists [7]. Recent literature explores hybrid
approaches, and models based on Knowledge Graphs have shown their effectiveness in
federating and structuring complex clinical data [8].

Problem statement. Despite these advances, there is still a lack of integrated systems
that can simultaneously exploit both tabular and ontological representations of medical
knowledge in an explainable and clinically usable way. Current approaches either focus on data
structure without semantic reasoning or rely on ontologies that remain too complex for real
clinical environments. This fragmentation prevents the development of intelligent systems
capable of combining speed, semantic depth, and interpretability.

Research gap. While the Federated Virtual Knowledge Graph (FVKG) paradigm [9,10]
has demonstrated the technical feasibility of linking tabular and RDF data through mappings,
there is little empirical evidence of hybrid systems capable of performing parallel reasoning
and delivering explainable medical insights. No prior study has provided a local, operational
implementation bridging tabular querying and ontological inference in a unified medical
assistant.

Research questions and urgency. This work therefore addresses three key questions:
(1) How can a hybrid assistant simultaneously query tabular and ontological data to generate
accurate and clinically explainable results? (2) To what extent does semantic fusion improve
the relevance and response time of medical queries compared to isolated models? (3) How can
such a system contribute to building trustworthy, locally deployable intelligent assistants for
connected healthcare? The urgency of this research lies in the growing need for interpretable
and reliable Al in medical decision support, particularly in resource-limited settings where
clinicians require transparent tools that combine speed and comprehension.

To address this gap, our study proposes a hybrid medical assistant capable of querying,
in parallel, two sources derived from the same dataset: an Excel table representing the clinical
data of diabetic patients and an OWL ontology representing the same dataset in a semantic
model. The GPT engine merges both responses to produce a unified, contextualised, and
explainable synthesis. The case study involves 100 patients with various forms of diabetes and
300 medical questions (100 simple, 100 complex, 100 very complex). The system achieves an
overall accuracy of 99%, with average response times below six seconds.

This performance is supported by three complementary components: a tabular pipeline
(via Pandas) ensuring rapid access to structured data, an ontological pipeline (via SPARQL)
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enabling complex semantic queries, and a GPT-based fusion engine that orchestrates the
synthesis of both responses into a coherent medical interpretation. This model builds upon
previous work demonstrating the benefits of paradigm fusion [11,12], leverages recent
structures such as Personal Knowledge Graphs [13], and applies lightweight ontologies in a
local context [14]. Finally, it is grounded in a rigorous evaluation framework derived from
ontology engineering and medical artificial intelligence research [6]. By combining these
technologies, our contribution shows that parallel, local, and explainable semantic fusion can
not only optimise diabetes management but also establish the foundations for a new
generation of intelligent, human-centred medical assistants.

STATE OF THE ART

Connected medicine uses artificial intelligence (Al) systems to interpret a variety of
medical data, with the aim of optimising care and diagnosis. There are three main areas of
research: models based on tabular data, ontologies and Knowledge Graphs, and hybrid
architectures that combine these two paradigms. Structured records (CSV, EHR) fed by
supervised models (decision trees, deep networks) show solid results for predicting
complications associated with diabetes. However, their lack of capacity to provide semantically
rich explanations limits their usefulness in clinical practice [15]. Ontologies (SNOMED CT,
OMOP, LOINC) and Knowledge Graphs facilitate interoperability and allow expert reasoning.
For example, the study by Spoladore et al (2024) in Artificial Intelligence in Medicine
demonstrates the positive impact of ontology-based decision-making systems for nutritional
and glycaemic monitoring of diabetic patients [16].

On the other hand, Botha et al (2024) explore through an in-depth review the impact
of Al models on patient rights and safety, highlighting key ethical challenges [17]. Wang et al.'s
(2023) work with MediTab strengthens tabular predictions through semantic enrichment [18].
SeFNet (Woznica et al, 2023) introduces a technical framework for aligning tabular and
semantic features to support machine learning ontology integration [19].
Complementarily, Afandi et al. (2024) highlight the interpretive dimension of data relationships
using network analysis, reinforcing the role of relational structures in hybrid knowledge
systems. The approach of Lepetit Ondo et al. 2025 enables transparent federation of tabular
and RDF data, promoting confidentiality and consistency via SPARQL [20]. In the context of
diabetes, Rad et al. (2024) integrate digital twins and patient-centric graphs, improving real-
time blood glucose monitoring [21]. Finally, Qin et al (2025) have developed a diabetic Q&A
system combining Neo4j and LLM, achieving over 85% accuracy for entity recognition and
almost 89% for intention classification [22]. Challenges and limitations

- Semantic alignment: the robustness of SPARQL mappings remains a major challenge,
particularly for complex alignments [6].

- Answer fusion: current hybrid systems are often limited to juxtaposition or weighting.
The use of an API based on an LLM model such as GPT to generate a unified and explanatory
synthesis remains largely unexplored.

- Clinical explicability: the construction of a traceable meta-analysis, which documents
the origin and justification of responses, is still largely underexplored.

Table 1 below summarises these features, highlighting their main objectives, their
respective strengths and their structural and functional limitations.
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Table 1. Comparison of tabular, ontological and hybrid approaches in healthcare decision
support systems

Model Objectives Forces Limits

Tabular Prediction, speed, Reliable, well controlled Not very semantic,
simplicity limited explicability

Ontological Inference, consistency, Formal reasoning, Complexity, limited
transparency interoperability clinical adoption

Hybrid Greater relevance & Synergy of the advantages of Complex alignments,
confidentiality the two paradigms immature fusion

Our proposal is part of this dynamic, a medical assistant for diabetics, querying tabular
and ontological sources in parallel, and merging the answers via an API based on LLM to offer
contextualised, explained and clinically validated results.

METHODS

a) Type of research

This study is an applied experimental research combining elements of system design,
semantic modelling, and empirical evaluation. It aims to build and assess a hybrid intelligent
assistant for connected medicine through a real clinical use case on diabetes management. The
approach follows a design—-build—evaluate paradigm typical of computer science and
information systems engineering.

b) Overview

Our methodology is based on the construction, implementation, and evaluation of a
hybrid intelligent assistant capable of querying, in parallel, two types of data structures
representing the same medical knowledge:
(1) a tabular dataset (Excel file extracted from an electronic medical record on diabetes), and
(2) an ontology derived from the same data source.

The main objective is to evaluate, in a comparative and combined way, the ability of each data
representation to produce relevant, explainable, and rapid answers to clinical questions
expressed in natural language.

¢) Methodological steps

The proposed architecture is modular and hybrid, combining heterogeneous sources
of medical data (structured files and ontologies) and semantic reasoning capabilities with a
generative Al engine.

It is based on three major functional areas:

(1) Semantic knowledge centre: the knowledge base is modelled in the form of an
ontology designed in Protégé, and used via Apache Jena for dynamic SPARQL queries. It is
generated from a dataset of patients suffering from diabetes, taken from structured electronic
records (EHR).

(2) Interface and interpretation centre: users (e.g. healthcare professionals) interact via
a user interface (Ul) connected to an APl incorporating an LLM model. This API provides natural
language processing, semantic reformulation of queries and explanatory merging of responses
from the two sources.

(3) Tabular data centre: the initial formats (XLSX, CSV, XML, JSON) feed both the direct
tabular structure and the ontology, guaranteeing the consistency of the content analysed.
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Figure 1. General architecture of the hybrid medical decision support system
1. Initiation phase: data collection and conceptual framework

The dataset used in this research was collected at the City Medical Laboratory in
Kinshasa, and includes detailed information on diabetic patients, such as demographic
attributes (age, sex, weight), medical indicators (blood glucose, complications, treatments), and
diagnostic history. From a conceptual perspective, the framework relies on knowledge
representation and semantic integration theories, aiming to bridge the gap between structured
data and symbolic reasoning. The hypothesis underlying the experiment is that parallel
querying of tabular and ontological representations improves interpretability and performance
in medical question answering.

2. Development phase: architecture design

The proposed architecture is modular and hybrid, combining heterogeneous sources
of medical data (structured files and ontologies) with semantic reasoning capabilities
orchestrated by a generative Al engine. It is composed of three functional layers:

a) Semantic knowledge centre : The knowledge base is modelled as an OWL ontology
designed in Protégé and hosted in Apache Jena for SPARQL queries. It is generated from
the patient dataset derived from electronic health records (EHR).

b) Interface and interpretation centre : Users (clinicians, researchers) interact via a user
interface (Ul) linked to an API that integrates a Large Language Model (LLM). This API
manages natural language understanding, reformulation, and semantic fusion of answers.

c) Tabular data centre : Original clinical data (Excel, CSV, JSON) are accessed directly through
Pandas to ensure structural consistency between the relational and ontological sources.

3. Implementation phase

The hybrid assistant was developed in Python 3.10, using rdflib, pandas, openai, and
matplotlib for processing and visualization. The ontology was created in Protégé, and semantic
queries were executed via Fuseki Jena. The interface was implemented in Streamlit, enabling
interactive input of medical questions and real-time display of responses.
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The GPT-based fusion engine synchronises both data flows (tabular and semantic) to generate
a unified, explainable answer. This design allows seamless interaction between local data and
semantic reasoning without external dependencies.

4. Evaluation phase

To evaluate system performance, 300 medical questions were formulated and validated
by an endocrinology expert. These questions were classified into three cognitive complexity
levels (simple, complex, and very complex). Three main metrics were used for quantitative
evaluation:

a) Response time (seconds) — measures latency between question and answer;
b) Relevance rate (%) — proportion of answers judged correct by medical assessors;
c) Response rate (%) — number of valid answers generated versus total questions asked.

Results showed an average response time of under six seconds and an accuracy rate of
99%, confirming the efficiency of semantic—tabular fusion for medical reasoning.

Ontological transformation
The transformation of the tabular set into an ontology took place in several phases:
(a) Identification of concepts (Patient, Treatment, Diabetes, Complication, etc.),
(b) Creation of classes and properties (e.g. aForTreatment, aDiabetes, aComplication),
(c) Automatic generation of RDF triplets from Excel rows.

How the assistant works

The intelligent assistant is structured into three parallel modules. Table 2 presents the
three fundamental modules of the system: an NLP parser in charge of natural language
understanding, a tabular engine for direct querying of structured files, and an ontology engine
exploiting the inference capabilities of SPARQL on an OWL ontology. These modules work
simultaneously to enrich the final response.

Table 2. Main functions of processing modules in hybrid architecture

Module Main function
1. NLP Analyser Natural language processing, extraction of key entities
2. Tabular motor Direct query of Excel data via pandas

3. Ontology Engine Natural language processing, extraction of key entities

Classification of questions

Based on the literature in Semantic QA and Cognitive Load Theory [23,24], the
questions have been classified into three levels. Table 3 shows three levels of difficulty
applicable to user queries: simple questions (direct extraction), complex questions (crossing of
criteria), and very complex questions (requiring multi-level inferences). This hierarchy gives a
better idea of the hybrid system's processing capabilities.

Table 3. Typology of questions according to their cognitive complexity

Type of question Example Complexity

Simple ‘What is patient X's weight?’ Direct extraction
Complex "Type 2 patients with blood glucose >180 mg/dL Cross-referencing criteria
Very complex ‘% of patients with type 2 diabetes + complications ~ Multi-level reasoning

+ weight > 100 kg'.
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In order to dynamically guide processing, each question is classified according to a
complexity score calculated on the basis of its linguistic and semantic characteristics. The
following formula was used:

C(q) = a.len(q) + B.med(q) + y.logic(q)

Where:
«len(q) denotes the length of the question in number of words, »
«med(q) corresponds to the number of medical concepts detected, »
«logic(q) reflects the logical depth (implicit inference levels), »
«a, [, y are empirical weights adjusted during the learning phase. »

This score enables the fusion module to be dynamically calibrated to give preference
to certain sources depending on their complexity.

The merging of responses from the two sources (tabular and ontological) is based on
adaptive weighting:

R = AR+ (1 —A).Ry

Where:
«R¢ is the final confidence score»
« R; 1s the score of the tabular answer»
« Ry is that of the ontological answer»
«A€e[0,1] isan adaptive coefficient adjusted according to the nature of the question»

This mechanism ensures that sources complement each other, while taking account of
the context in which they are queried.

Evaluation protocol
We proposed a sample of 300 questions corrected and validated by an expert in devil
management (100 of each type), submitted to our system
For each question, we measured :
a. Response time (in seconds),
b. the relevance of the answer (correct, partial, incorrect),
c. explanatory capacity (justification of the answer).
A binary scoring system (1=correct, O=incorrect) was used to objectify the results. [25]

Metrics used

Table 4 shows the three key indicators used for the evaluation: average response time,
relevance rate (accuracy of responses according to the evaluators), and response rate (ability
of the system to produce a response). These measures enable a rigorous comparative analysis
of the performance of the different modules involved.

Table 4. Main metrics used to assess the system

Indicator Description

Average time Time between question asked and answer received
Relevance rate Percentage of answers deemed correct by assessors
Response rate Percentage of questions for which an answer was produced

Technological tools
1. Python 3.10 with pandas, rdflib, openai, matplotlib
2. Protégé for OWL modelling
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3. Google Colab for distributed testing
4. Fuseki Jena for ontology hosting

RESULTS AND DISCUSSION

1. Initiation: Data and conceptual preparation

The dataset used for the experiment consisted of 100 diabetic patients, each described
by 25 attributes extracted from electronic medical records (EHR). The data were preprocessed
to ensure consistency between the tabular and ontological versions. Each variable in the Excel
file (age, glucose level, treatment, complications, etc.) was semantically mapped to a
corresponding concept in the ontology using Protégé. This alignment ensured a one-to-one
correspondence between factual and semantic representations, establishing a coherent
experimental foundation.

2. Development: Architecture validation

The architecture designed during the methodological phase was implemented and
validated as planned. The three main functional components the tabular module (Pandas), the
ontological module (SPARQL/Jena), and the GPT-based fusion engine operated synchronously
within the Python environment. This configuration successfully handled the exchange between
structured data and the OWL reasoning layer. During testing, the system demonstrated stable
performance with minimal resource consumption, validating the modular and hybrid nature of
the proposed design.

3. Implementation: Execution of the hybrid assistant

The implementation of our intelligent assistant relied on a user-friendly human-
machine interface (HMI), enabling clinicians and researchers to formulate queries in natural
language. The interface, developed in Python via Streamlit, interacts with a backend consisting
of the two parallel engines described above. When a question is entered, it is first analysed by
an NLP module (OpenAl API), then simultaneously processed by both engines. The fusion
engine merges and reformulates the responses into a coherent and clinically interpretable
answer. The assistant was tested on 300 medical questions of varying complexity (simple,
complex, and very complex), with real-time monitoring of accuracy and latency.

¢» Conversational Medical Assistant -
Diabetes

¢~ Discussions

¢~ Discussions

Figure 2. Hybrid assistant user interface
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4. Evaluation: Performance and discussion

Quantitative evaluation revealed that the assistant achieved an overall accuracy of 99%,
even for highly complex queries involving multi-variable reasoning. The average response time
remained below six seconds, demonstrating a balance between speed and interpretability. The
tabular module contributed to fast retrieval, while the ontological module enhanced semantic
precision. These complementary effects confirm that hybridisation improves both efficiency
and clinical relevance. Qualitative analysis further showed that clinicians appreciated the
transparency and traceability of explanations generated by the fusion engine, which supports
explainable Al (XAl) principles in connected healthcare. From a theoretical perspective, these
results validate the hypothesis stated in the Methodology: parallel querying of tabular and
ontological representations enhances both accuracy and comprehension. This outcome
strengthens the argument for integrating hybrid reasoning systems into medical decision-
making processes.

Assessment of the system by question type

The tests involved a set of 300 questions classified according to their cognitive
complexity (simple, complex, very complex). Each type of question was formulated in relation
to diabetes management. The aim was to compare response times, success rates and the
relevance of the answers generated.

Table 5. Typology of questions according to their complexity

Level of complexity Sample question System expectations

Simple How old is patient X? Direct extraction

Complex Which patients have a high BMI and Cross-referencing criteria
are on active treatment?

Very complex Which untreated diabetic patients over Reasoning and inference

the age of 50 have critical blood sugar levels?

Measured response time
Table 6. Summary of response times for all questions

Type of question Average time (s) Min. (s) Max. (s) Ecart—type
Simple 343 1.01 16.92 Low
Complex 4.73 1.82 9.23 Moderate
Very complex 5.61 2.03 11.67 High
Response Time per Question
16
14
“n
.QE_)IO
=
25
8_
§ 6
4
2

Questions

Figure 3. Time curve for simple questions
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Response Time per Question (Complex Questions)

10

Response Time (s)
-

0 20 40 60 80 100
Questions

Figure 4. Time curve for complex questions

Response Time per Question (Very Complex Questions)

Response Time (s)
B

0 20 40 60 80 100

Questions

Figure 5. Time curve for very complex questions
Relevance and response rate

Table7. Analysis of the ontology's relevance component

Complexity Response rate generated Relevance rate
Simple 100 % 100 %
Complex 100 % 100 %
Very complex 100 % 99 %
Simple Questions - Correct Answers (%)
100} 100% 100%
F 80f
3
T
o
E 601 B Response Generated
2 Hl Relevance
<
§ a0t
S
(9]
20t
0 Response Generated Relevance

Figure 6. Relevance graph for simple questions
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Complex Questions - Correct Answers (%)

100 100% 100%

80

60

B Response Generated

N Relevance

40

Correct Answer Rate (%)

20

Response Generated Relevance

Figure 7. Relevance graph for complex questions

Very Complex Questions - Correct Answers (%)

100% GG,

100

BOF

0 B Response Generated

E FRelevance

Elily

Caorrect Answer Rate (%)

20

o Response Generated Relevance

Figure 7. Relevance graph for complex questions

The experimental results obtained highlight the effectiveness of our hybrid approach,
combining a tabular database and an ontology to query medical information in parallel. A
comparative analysis of 300 questions revealed robust performance in terms of both the speed
and relevance of responses. These results take on particular significance in the context of
diabetes management, a chronic disease requiring a detailed understanding of patient profiles
and treatment conditions that are often intertwined. The interest of our architecture lies
essentially in its capacity for generalisation, its cognitive versatility and its intrinsic explicability.
Unlike traditional systems that only use relational databases or simple AQ models, our solution
simultaneously uses complementary structures. This combination enables the system to answer
simple questions but also to resolve complex clinical cases involving multiple inferences. This
work confirms what had already been theorised in recent approaches to the complementarity
of heterogeneous knowledge structures in healthcare [15][18][16]. The results obtained, in
particular the 99% relevance on very complex questions, are comparable or even superior to
those of other recent systems based solely on knowledge graphs [26] [27]. Another highlight
is the system's explanatory capacity. Thanks to the ontology engine, the answers provided are
not just factual, but integrated into a comprehensible clinical logic. The reasoning can thus be
traced and justified, boosting user confidence, particularly in critical areas such as diabetes
monitoring or appropriate prescribing.

In terms of limitations, however, we note that the algorithmic complexity increases with
the degree of inference required, which can result in a slight latency (up to 11 seconds in some
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cases). Future improvements could include (a) pre-indexing recurring queries, (b) streamlining
dynamic SPARQL inferences, (c) or integrating semantic heuristics to shorten merge times.

It would also be appropriate to extend the experiments to other chronic pathologies
such as hypertension or cardiovascular disease, to confirm the portability of the approach.
Finally, the system's ability to adapt to the natural language used in a variety of clinical contexts
makes it a potential solution for integration into hospital environments, particularly in contexts
with low human resources or telemedicine.

CONCLUSIONS AND SUGGESTIONS

In a context where healthcare systems are faced with an explosion of data and
increasingly complex clinical decisions, this article has proposed a hybrid approach based on
the parallel fusion of two knowledge structures: tabular data and ontologies. Through the
development of an intelligent assistant applied to the management of diabetes, we have
demonstrated the relevance of this combination, both in terms of the accuracy of responses
and their explicability. The experimental results are unequivocal: the system achieves a 99%
relevance rate on very complex questions while maintaining reasonable response times, even
in the presence of inference operations. This performance testifies to the robustness of the
fusion engine, which effectively exploits the complementary nature of both paradigms to
provide synthetic, contextualised, and clinically interpretable answers. More than just a
technical prototype, this solution represents a proof of concept for localised, transparent, and
user-oriented intelligent systems in healthcare, validating the potential of semantic fusion as a
means to reconcile computational efficiency with interpretability and paving the way for the
next generation of explainable and trustworthy medical assistants. Building upon this
foundation, future research could focus on extending the hybridisation model to other chronic
diseases, integrating it with clinical decision support systems and electronic health records
(EHR) to enable real-time reasoning and continuous knowledge updates. Further studies may
also enhance explainability through traceable reasoning mechanisms and conduct usability
evaluations involving medical practitioners to assess acceptance, trust, and decision-making
impact. Additionally, incorporating governance and provenance frameworks would reinforce
ethical accountability and auditability, ensuring that future intelligent systems remain both
technically robust and socially responsible within the evolving landscape of connected
healthcare.
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