Journal of Technology and Informatics (JoTI)

Vol. 7, No. 2, October 2025 P-ISSN 2721-4842 E-ISSN 2686-6102

Customer Satisfaction, Social Influence, and Facilitating Conditions Affecting Use Behavior in Ride-Hailing

Erwin Sutomo¹, Sulistiowati^{2*}, Vivine Nurcahyawati³, Martinus Sony Erstiawan⁴, Ayuningtyas⁵

^{1,2*,3,5}Department of Information Systems, Universitas Dinamika, Surabaya, East Java, Indonesia ⁴Department of Accounting, Universitas Dinamika, Surabaya, East Java, Indonesia e-mail: erwin@dinamika.ac.id¹, sulist@dinamika.ac.id²*, vivine@dinamika.ac.id³, martinus@dinamika.ac.id⁴, tyas@dinamika.ac.id⁵

Article Information

Article History:

Received : September 9th 2025 Revised : October 7th 2025 Accepted : October 24th 2025 Published : October 29th 2025

*Correspondence:

sulist@dinamika.ac.id

Keywords:

Behavioral, Conditions, Customer, Facilitating, Satisfaction, Social Influence

Copyright © 2025 by Author. Published by Universitas Dinamika.

This is an open access article under the CC BY-SA license.

10.37802/joti.v7i2.1222

Journal of Technology and Informatics (JoTI)

P-ISSN 2721-4842 E-ISSN 2686-6102

https://e-

journals.dinamika.ac.id/index.php/joti

Abstract:

The rapid expansion of online ride-hailing services has transformed urban mobility; however, sustaining user engagement remains a major challenge due to the interplay of psychological and technical factors. Despite widespread adoption, the determinants influencing users' continued use of such applications remain inconsistent and not fully understood. Therefore, this study examines the effects of Customer Satisfaction (CS), Social Influence (SI), and Facilitating Conditions (FC) on Use Behavior (UB) of online transportation applications, with Behavioral Intention (BI) as a mediating variable. The research was conducted in Surabaya with 150 active users of online ride-hailing services, and data were analyzed using Structural Equation Modeling-Partial Least Squares (SEM-PLS). The findings indicate that FC significantly affects both BI and UB, while CS and SI have significant positive effects on BI but not directly on UB. Moreover, BI is identified as the strongest predictor of UB and acts as a significant mediator in the relationships $CS \rightarrow BI \rightarrow UB$, SI \rightarrow BI \rightarrow UB, and FC \rightarrow BI \rightarrow UB. These results highlight the central role of intention in linking psychological and technical factors to actual use behavior. The study suggests that service providers enhance customer satisfaction, utilize social influence, and strengthen facilitating conditions to sustain user engagement.

INTRODUCTION

The development of digital technology has had a profound impact on people's lives, particularly in the area of transportation. In Indonesia, the availability of online transportation apps like Gojek, Grab, and Maxim not only facilitates service ordering but also provides speed, cost transparency, and security via electronic payment methods [1]. People who formerly relied on traditional modes of transportation have become more reliant on application-based services as a result of this phenomenon. One of Southeast Asia's biggest markets, Indonesia,

has seen a sharp increase in the usage of online transit, especially in highly mobile urban areas [2].

However, the sustainability of using behavior is just as important as the quantity of downloads or new users when evaluating the success of online transportation services. Numerous significant elements impact this sustainability. For instance, a major factor in determining whether users will stick with the program is customer satisfaction [3]. However, social influence cannot be disregarded because users' judgments are frequently influenced by recommendations from their social networks and digital media trends [4]. Furthermore, enabling factors like internet connectivity, device availability, and digital payment infrastructure are crucial in determining whether a service can be utilized to its full potential [5].

Several previous studies have attempted to identify these elements using a range of theoretical frameworks, such as the Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and Use of Technology (UTAUT). The results of these studies show that customer satisfaction has a significant impact on both behavioral intention and actual conduct [6], [7]. This isn't always the case, though. These results aren't usually consistent, though. According to certain research, usage behavior is directly impacted by customer satisfaction [6], [7], but other research indicates that behavioral intention acts as a mediator in this relationship [8]. Similar situations occur with the variables of social influence and enabling conditions, which have been shown in some studies to be relevant [9], [10].

A research gap is shown by the inconsistent research findings. First, scientific results are still inconsistent about whether social influence, customer happiness, and supporting factors have a direct impact or need to be mediated by behavioral intention. Second, while most previous research has used the traditional TAM or UTAUT models, few stu dies have incorporated the customer satisfaction variable as a crucial feature in the context of online transportation. Third, despite the fact that the social, cultural, and behavioral circumstances of users in Indonesia are different from those in developed countries, there are still few studies of this kind conducted in developing nations like Indonesia. This means that the findings of earlier study may not always be applicable.

In order to bridge the existing gap, this study looks at how social influence, enabling c ircumstances, and customer satisfaction affect how people utilize online transportation apps, using behavioral intention as a mediating variable. The Structural Equation Modeling Partial Least Squares (SEM-PLS) approach offers a more in-Depth analysis of the relationship between latent variables and is expected to support literature advancement and online transportation service administration in Indonesia both theoretically and practically.

METHOD

This study is a quantitative research with an explanatory approach, aiming to examine and explain the causal relationships among variables. Specifically, the effects of Customer Satisfaction (CS), Social Influence (SI), and Facilitating Conditions (FC) on Use Behavior (UB), with Behavioral Intention (BI) as a mediating variable. The conceptual framework, hypothesis testing, data collecting, data analysis, outcomes, and discussion are the phases of this study.

Conceptual Framework

Five factors make up the conceptual foundation for this investigation, specifically:

- 1. The degree to which a client's experience meets or beyond their expectations is known as customer satisfaction (CS) [11].
- 2. The degree to which people think there is sufficient infrastructure, resources, and technical

requirements to employ a system or technology is known as the Facilitating Condition (FC).

- 3. When people choose to use a system or piece of technology, Social Influence (SI) gauges how much their opinions are influenced by those they consider important, such as friends, family, coworkers, or the community [12].
- 4. Behavioral intentions, or BI, are the desire or intention of an individual to use a system or technology in the future.
- 5. Use Behavior (UB) refers to how much a person uses a system or technology in their daily activities.

Figure 1 displays the conceptual framework for this investigation.

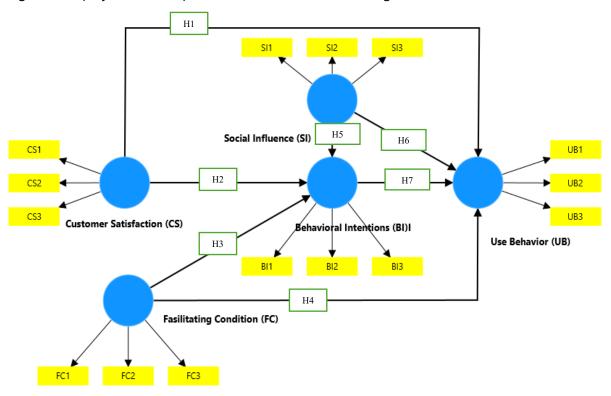


Figure 1: Conceptual Structure

Testing Hypothesis (H) H1: UB is significantly impacted by CS

H2: BI is significantly impacted by CS

H3: BI is significantly impacted by FC

H4: FC significantly impacts UB

H5: BI is significantly impacted by SI

H6: SI significantly impacts UB

H7: UB is significantly impacted by BI

Data gathering

From February to April 2025, online transportation users in the city of Surabaya were given questionnaires to complete in order to gather data. Given that there are 15 indicators in all, the required sample size for this study is 75–150 respondents, or 5–10 times the number of indicators based on Hair's criteria [13]. 150 online transportation users comprised the sample size of the study.

RESULTS AND DISCUSSION

A sample of 150 Surabaya residents who use online transit was employed in this investigation. According to descriptive data, 70 (46%) of the respondents were men and 80 (54%) were women. 25 (17%) of the respondents were between the ages of 16 and 20, 47 (31%), 11 (7%), and 67 (45%) were between the ages of 21 and 25.

Results of the measurement model

Table 1: Results of the measurement model

Construct	Indicator	Loading	CA	CR	AVE
CS			0.894	0.909	0.824
	CS1	0.935			
	CS2	0.915			
	CS3	0.872			
FC			0.739	0.876	0.634
	FC1	0.888			
	FC2	0.809			
	FC3	0.700			
SI			0.802	0.803	0.716
	SI1	0.831			
	SI2	0.837			
	SI3	0.871			
BI			0.822	0.828	0.738
	BI1	0.850			
	BI2	0.895			
	BI3	0.831			
UB			0.814	0.860	0.735
	UB1	0.923			
	UB2	0.931			
-	UB3	0.701			

Each construct in the model has good quality in terms of validity and reliability, according to the model measurement results in Table 1. Each construct can provide accurate and consistent measurements with a high Cronbach's alpha (CA) score between 0.739 and 0.894, suggesting good internal consistency. In a similar vein, composite reliability (CR) demonstrates how effectively the construct's pieces relate to one another and offer reliable metrics. All of the constructs in this study have outstanding reliability if their CR value is more than 0.7[13].

Furthermore, the average variance extracted (AVE) for each construct is higher than 0.5, indicating that they might explain more than 50% of the variance of the variables under investigation [14]. A notable indication of the caliber of this measurement model is the Customer Satisfaction (CS) construct, which has an AVE value of 0.824 and can explain over 80% of the variance of variables linked to customer satisfaction. Additionally, loadings show that each item used to measure the construct has a large and positive contribution to its particular construct, with results ranging from 0.700 to 0.935. All things considered, this model has outstanding validity and reliability.

Table 2: Heterotrait-monotrait ratio-based discriminant validity (HTMT)

Construct	ВІ	CS	FC	SI	UB
BI					

Construct	ВІ	CS	FC	SI	UB
CS	0.752				
FC	0.656	0.573			
SI	0.763	0.549	0.570		
UB	0.818	0.532	0.533	0.557	

The heterotrait-monotrait ratio (HTMT) is used to evaluate how dissimilar the model's constructs may be from one another. If the constructs' HTMT value is less than 0.85, they have excellent discriminant validity, meaning they are more different from one another and do not overlap too much [14]. The HTMT values in Table 2 of this study are all below 0.85, indicating high discriminant validity.

Table 3: Findings from the analysis of research ideas

Hypothesis	Relationship	Path coefficient	Mean	SD	t- value	p- value	Decision	f2	Inner VIF
H1	CS → UB	-0.008	- 0.006	0.092	0.086	0.931	Not Supported	0.000	1.822
H2	CS → BI	0.390	0.387	0.091	4.262	0.000	Supported	0.252	1.455
H3	FC → BI	0.206	0.209	0.074	2.773	0.006	Supported	0.069	1.496
H4	FC → UB	0.131	0.209	0.074	2.773	0.006	Supported	0.021	1.598
H5	SI → BI	0.343	0.345	0.083	4.138	0.000	Supported	0.198	1.435
Н6	SI → UB	0.012	0.019	0.083	0.149	0.882	Not Supported	0.000	1.719
H7	BI → UB	0.605	0.600	0.093	6.516	0.000	Supported	0.291	2.411

Table 4: Model strength

Table 4. Model strength								
	Cross re	edundancy me	Coefficient of					
Construct				determi	nation (R2)			
Construct	SSO	SSE	Q^2 (=1-	R2	Adj. R2			
			SSE/SSO)					
BI	450.000	261.614	0.419	0.585	0.577			
UB	450.000	300.808	0.332	0.478	0.463			

The predictive relevance (Q^2) test findings in Table 4 show that the Behavioral Intention (BI) construct has a Q^2 value of 0.419 and the Use Behavior (UB) construct has a value of 0.332. The model can accurately forecast the dependent variable because both values are greater than zero. Additionally, according to Hair's criteria [13]. the R2 values for BI = 0.585 (Adjusted R2 = 0.577) and UB = 0.478 (Adjusted R2 = 0.463) fall within the moderate range. This shows that the independent variables in the model alone may account for 58.5% of the variance in BI and 47.8% of the variance in UB, with the remaining fraction being influenced by unrelated variables. The structural model is therefore appropriate for comprehending the elements that impact the intention and behavior of utilizing online transportation applications since it has demonstrated sufficient predictive relevance and explanatory power.

Table 5 Index of goodness of fit

10010 3. 11	rable 3. maex or goodness or ne							
Communality	R square	GoF index						
average	average							
0.595	0.600	0.598						

The Goodness of Fit (GoF) value was calculated using the average Communality (0.595) and average R2 (0.600), yielding an index of 0.598. This result surpasses the 0.36 criterion, placing it in the large fit group based on Hair's (2019) criteria. This result suggests that the model has sufficient predictive relevance, significant global validity, and good latent construct explanatory power. Therefore, it can be said that the SEM-PLS model employed in this study is both viable and capable of offering a thorough understanding of the variables influencing the intention and behavior of using online transportation applications.

Table 6. Indirect Effect

Relationship	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values	Decision
CS → Bi → UB	0.236	0.233	0.069	3.442	0.001	Supported
FC → Bi → UB	0.125	0.125	0.048	2.622	0.009	Supported
SI → Bi → UB	0.208	0.207	0.059	3.500	0.000	Supported

Discussion of Correlation Analysis

Table 3 compiles the findings of the hypothesis test, including path coefficients, means, standard deviations, t-values, p-values, effect sizes (f2), and internal VIFs. These findings demonstrate both significant and subtle relationships between the constructs.

H1: Usage Behavior (UB) is significantly impacted by Customer Satisfaction (CS). Customer satisfaction (CS) had no discernible effect on usage behavior (UB) (β = -0.008, t = 0.086, p = 0.931). This suggests that although customers may be happy with the service, their pleasure does not necessarily translate into continuing use. Table 6 revealed that CS has an indirect impact on UB through BI. This is consistent with other studies showing that usage intention, which in turn influences actual behavior, is strongly influenced by satisfaction with AI-based CRM systems [14] Your research's conclusions, which indicate that CS has a major impact on BI but has no direct effect on UB, are consistent with previous findings. This indicates that although customers are satisfied, their intention to utilize the service again is formed before this intention is actually reflected in their behavior. As a result, BI is crucial in moderating the link between CS and UB. Practically speaking, this means that internet transportation service providers must use loyalty programs, ongoing marketing, and consistent user experiences to guarantee that client happiness is converted into positive intentions.

H2: Behavioral Intentions (BI) are significantly impacted by Customer Satisfaction (CS). Customer satisfaction (CS) has a positive and significant impact on behavioral intentions (BI) (β = 0.390, t = 4.262, p < 0.001). This implies that a stronger willingness to continue using ridehailing applications is fostered by higher satisfaction ratings. The moderate effect size (f2 = 0.252) demonstrates that intention is significantly influenced by satisfaction. This conclusion is corroborated by earlier studies that demonstrate a high positive correlation between BI and satisfaction in the context of AI-based CRM systems. Consequently, it can be concluded that if customers are happier with online transportation services, they are more likely to plan to keep using them sustainably [15].

H3: BI is significantly impacted by supporting conditions (FC).

Bl is significantly improved by Supporting Conditions (FC) (β = 0.206, t = 2.773, p = 0.006). Sufficient resources, such dependable internet connectivity and simple digital payment methods, motivate customers to plan on using ride-hailing services. Despite this, the effect size (f2 = 0.069) is really tiny. This conclusion is corroborated by earlier research, which found that infrastructure availability, technical assistance, and suitable gadgets all promote the development of the desire to utilize technology [16], [17], [18]. This implies that users' intention to stick with an online transportation application increases with the quality of the supporting conditions they perceive.

H4: FC significantly impacts UB

Furthermore, FC directly affects UB (β = 0.131, t = 2.773, p = 0.006), indicating that when users have access to supporting infrastructure, they may turn their intentions into actions. This dual impact (direct and indirect via BI) emphasizes how important environmental preparedness is to the uptake of digital transportation services. Previous research supports these findings [19], [20]. These results suggest that consumers can convert their intentions into real action when sufficient infrastructure, including gadgets, internet networks, and digital payment systems, is available.

H5: Social Influence (SI) significantly affects BI

Social Influence (SI) had a significant effect on BI (β = 0.343, t = 4.138, p < 0.001). This suggests that users' inclination to use ride-hailing apps is significantly influenced by recommendations from friends, family, and social networks. With f2 = 0.198, the effect size is moderate. Previous study supports this conclusion by demonstrating that the opinions, encouragement, or support of people in an individual's immediate social circle, such as friends, family, and the community, can enhance that person's intention to use the application [21], [22]. Therefore, the stronger the perceived social impact, the more likely a user is to use online transportation services.

H6: SI significantly impacts UB

However, SI does not significantly affect UB (β = 0.012, t = 0.149, p = 0.882). This demonstrates that social influence does not directly promote actual usage behavior, even while it is successful in influencing intentions. These findings suggest that usage decisions become less reliant on outside influences and more independent after intentions are established. This runs counter to other research that suggests SI has a major impact on UB [23], [24], [25]. But according to Table 6, social influence has a greater impact on how intentions are formed, which in turn affects actual usage.

H7: BI significantly influenced UB

UB was considerably and significantly impacted by behavioral intention (β = 0.605, t = 6.516, p < 0.001). With the largest impact size (f2 = 0.291), this path is the best indicator of actual ride-hailing usage. This is corroborated by other studies, which show that behavioral purpose significantly affects system usage behavior [26], [27], [28], [29]

CONCLUSIONS AND SUGGESTIONS

Its goal was to use SEM-PLS to examine how Customer Satisfaction (CS), Social Influence (SI), and Facilitating Conditions (FC) affect Usage Behavior (UB). The findings indicated that whereas FC had an influence on both BI and UB, CS and SI had a considerable

impact on BI but no direct effect on UB. In the associations $CS \rightarrow BI \rightarrow UB$, $SI \rightarrow BI \rightarrow UB$, and $FC \rightarrow BI \rightarrow UB$, it was found that BI was the strongest predictor of UB. It also played a vital mediating function in connecting technical and psychological factors with real behavior. Practically speaking, these results suggest that in order to convert users' intentions into actual usage patterns, Surabaya's online transportation service providers should focus on improving customer satisfaction, leveraging social influence through community-based strategies, and strengthening auxiliary factors like internet speed, payment convenience, and application security. To improve our understanding of the uptake of online ride-hailing services, future research is recommended to use a longitudinal design, include bigger and cross-regional samples, and consider other factors as perceived danger, trust, and service quality. The sample size and geographic scope of this study, which is limited to Surabaya, are its main limitations.

REFERENCES

- [1] L. Sun, R. H. Teunter, G. Hua, and T. Wu, "Taxi-hailing platforms: Inform or Assign drivers?," *Transportation Research Part B: Methodological*, vol. 142, pp. 197–212, Dec. 2020, doi: 10.1016/j.trb.2020.10.001.
- [2] I. Mavlutova, D. Atstaja, J. Grasis, J. Kuzmina, I. Uvarova, and D. Roga, "Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review," Apr. 01, 2023, *MDPI*. doi: 10.3390/en16083585.
- [3] R. Filieri, F. Acikgoz, V. Ndou, and Y. K. Dwivedi, "Is TripAdvisor still relevant? The influence of review credibility, review usefulness, and ease of use on consumers' continuance intention."
- [4] C. Wang, G. Wu, X. Zhou, and Y. Lv, "An Empirical Study of the Factors Influencing User Behavior of Fitness Software in College Students Based on UTAUT," *Sustainability* (*Switzerland*), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14159720.
- [5] N. Songkram and H. Osuwan, "Applying the Technology Acceptance Model to Elucidate K-12 Teachers' Use of Digital Learning Platforms in Thailand during the COVID-19 Pandemic," *Sustainability (Switzerland)*, vol. 14, no. 10, May 2022, doi: 10.3390/su14106027.
- [6] J. Guo, W. Zhang, and T. Xia, "Impact of Shopping Website Design on Customer Satisfaction and Loyalty: The Mediating Role of Usability and the Moderating Role of Trust," *Sustainability (Switzerland)*, vol. 15, no. 8, Apr. 2023, doi: 10.3390/su15086347.
- [7] J. Guo, W. Zhang, and T. Xia, "Impact of Shopping Website Design on Customer Satisfaction and Loyalty: The Mediating Role of Usability and the Moderating Role of Trust," *Sustainability (Switzerland)*, vol. 15, no. 8, Apr. 2023, doi: 10.3390/su15086347.
- [8] S. Chatterjee, N. P. Rana, S. Khorana, P. Mikalef, and A. Sharma, "Assessing Organizational Users' Intentions and Behavior to Al Integrated CRM Systems: a Meta-UTAUT Approach," *Information Systems Frontiers*, vol. 25, no. 4, pp. 1299–1313, Aug. 2023, doi: 10.1007/s10796-021-10181-1.
- [9] S. Schukat and H. Heise, "Towards an understanding of the behavioral intentions and actual use of smart products among german farmers," *Sustainability (Switzerland)*, vol. 13, no. 12, Jun. 2021, doi: 10.3390/su13126666.
- [10] E.-M. Schomakers, C. Lidynia, L. S. Vervier, A. Calero Valdez, and M. Ziefle, "Applying an Extended UTAUT2 Model to Explain User Acceptance of Lifestyle and Therapy Mobile Health Apps: Survey Study," *JMIR Mhealth Uhealth*, vol. 10, no. 1, p. e27095, Jan. 2022, doi: 10.2196/27095.

- [11] A. N. Yogatama and A. P. Wardhanie, "Peran E-Service Quality Dalam Meningkatkan Penjualan Makanan Melalui Penggunaan Aplikasi ShopeeFood," *Journal of Technology and Informatics (JoTI)*, vol. 3, no. 2.
- [12] N. Monica Hidayat, M. Nasrullah, and N. Pudji Istyanto, "Analisis Unified Theory Of Acceptance And Use Of Technology (UTAUT) Terhadap Penerimaan Adopsi Teknologi E-Learning Pada Fitur Video Conference Di Kalangan Mahasiswa Kampus Baru (Studi Kasus: ITTelkom Surabaya)," *Journal of Technology and Informatics (JoTI)*, vol. 4, no. 1, pp. 18–25, Oct. 2022, doi: 10.37802/joti.v4i1.258.
- [13] J. J. R. M. S. C. M. R. Joseph F. Hair, "When to use and how to report the results of PLS-SEM," *European Business Review*, vol. 31, no. 1, Jan. 2019.
- [14] Y. Liu-Thompkins, S. Okazaki, and H. Li, "Artificial empathy in marketing interactions: Bridging the human-Al gap in affective and social customer experience," *J Acad Mark Sci*, vol. 50, no. 6, pp. 1198–1218, Nov. 2022, doi: 10.1007/s11747-022-00892-5.
- [15] S. Chatterjee, N. P. Rana, S. Khorana, P. Mikalef, and A. Sharma, "Assessing Organizational Users' Intentions and Behavior to Al Integrated CRM Systems: a Meta-UTAUT Approach," *Information Systems Frontiers*, vol. 25, no. 4, pp. 1299–1313, Aug. 2023, doi: 10.1007/s10796-021-10181-1.
- [16] R. Palau-Saumell, S. Forgas-Coll, J. Sánchez-García, and E. Robres, "User acceptance of mobile apps for restaurants: An expanded and extended UTAUT-2," *Sustainability* (*Switzerland*), vol. 11, no. 4, 2019, doi: 10.3390/su11041210.
- [17] V. Rosmayanti, N. Noni, and A. A. Patak, "Students' Acceptance of Technology Use in Learning English Pharmacy," *International Journal of Language Education*, vol. 6, no. 3, pp. 314–331, 2022, doi: 10.26858/ijole.v6i3.24144.
- [18] J. M. Sahut and R. Lissillour, "The adoption of remote work platforms after the Covid-19 lockdown: New approach, new evidence," *J Bus Res*, vol. 154, Jan. 2023, doi: 10.1016/j.jbusres.2022.113345.
- [19] J. E. Lyu and J. Zhang, "An empirical study into consumer acceptance of dockless bikes sharing system based on tam," *Sustainability (Switzerland)*, vol. 13, no. 4, pp. 1–16, Feb. 2021, doi: 10.3390/su13041831.
- [20] S. Schukat and H. Heise, "Towards an understanding of the behavioral intentions and actual use of smart products among german farmers," *Sustainability (Switzerland)*, vol. 13, no. 12, Jun. 2021, doi: 10.3390/su13126666.
- [21] C. Wang, G. Wu, X. Zhou, and Y. Lv, "An Empirical Study of the Factors Influencing User Behavior of Fitness Software in College Students Based on UTAUT," *Sustainability* (*Switzerland*), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14159720.
- [22] K. M. White, J. R. Smith, D. J. Terry, J. H. Greenslade, and B. M. Mckimmie, "Social influence in the theory of planned behaviour: The role of descriptive, injunctive, and ingroup norms."
- [23] W. Choi *et al.*, "Study of the factors influencing the use of MyData platform based on personal health record data sharing system," *BMC Med Inform Decis Mak*, vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12911-022-01929-z.
- [24] E.-M. Schomakers, C. Lidynia, L. S. Vervier, A. Calero Valdez, and M. Ziefle, "Applying an Extended UTAUT2 Model to Explain User Acceptance of Lifestyle and Therapy Mobile Health Apps: Survey Study," *JMIR Mhealth Uhealth*, vol. 10, no. 1, p. e27095, Jan. 2022, doi: 10.2196/27095.

- [25] J. P. Onnela and F. Reed-Tsochas, "Spontaneous emergence of social influence in online systems," *Proc Natl Acad Sci U S A*, vol. 107, no. 43, pp. 18375–18380, Oct. 2010, doi: 10.1073/pnas.0914572107.
- [26] Sulistiowati, "Examining mobile learning adoption: The role of ease of use, usefulness, and intention," *TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika*, vol. 12, pp. 264–270, 2025.
- [27] S. Chatterjee, N. P. Rana, S. Khorana, P. Mikalef, and A. Sharma, "Assessing Organizational Users' Intentions and Behavior to Al Integrated CRM Systems: a Meta-UTAUT Approach," *Information Systems Frontiers*, vol. 25, no. 4, pp. 1299–1313, Aug. 2023, doi: 10.1007/s10796-021-10181-1.
- [28] Y. K. Dwivedi, E. Ismagilova, P. Sarker, A. Jeyaraj, Y. Jadil, and L. Hughes, "A Meta-Analytic Structural Equation Model for Understanding Social Commerce Adoption," *Information Systems Frontiers*, vol. 25, no. 4, pp. 1421–1437, Aug. 2023, doi: 10.1007/s10796-021-10172-2.
- [29] C. Wang, G. Wu, X. Zhou, and Y. Lv, "An Empirical Study of the Factors Influencing User Behavior of Fitness Software in College Students Based on UTAUT," *Sustainability* (*Switzerland*), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14159720.