
Journal of Technology and Informatics (JoTI)

Vol. 6, No. 1, October 2024

P-ISSN 2721-4842

E-ISSN 2686-6102 DOI: 10.37802/joti.v6i1.637

58

Operating Systems (OS): An Insight Investigative Research Analysis

and Future Directions

Zarif Bin Akhtar1

1Department of Engineering, University of Cambridge, Cambridge, United Kingdom

e-mail: zarifbinakhtarg@gmail.com1
* Corresponding author: E-mail: zarifbinakhtarg@gmail.com

Abstract: In the realm of technological computing, the pivotal interface of operating systems (OS) governs the

orchestration of machinery, orchestrating seamless human interactions with the swiftly advancing array of device

peripherals. Over decades, the intricacies of computing have undergone a profound metamorphosis, embracing

monumental leaps facilitated by the progressive proliferation of operating system distributions. From the erstwhile

colossal processing units to the present-day intricately crafted nano-fabricated microcontrollers, motherboards, and

chipsets, all human-computer interactions gravitate towards the nuanced tapestry of OS distributions and intricately

woven source-coded programming. This comprehensive research endeavors to undertake a meticulous exploration of

the myriad typologies of operating systems, intricately dissecting their distinctive functionalities and performance

metrics, with a discerning focus on aligning specific user profiles with the most fitting OS distributions. Moreover,

this investigation seeks to unravel the labyrinthine landscape of OS distributions, illuminating the optimal pathways

for both seasoned users and neophytes alike.

Keywords: Computing; Computer Architecture; Computation Processing; Information Technology; Open-Source;

Operating Systems (OS); Security; Technological Computing; System Distributions.

INTRODUCTION
In the dynamic landscape of the 21st century's

tech sector, groundbreaking innovations have

significantly shaped the industry's trajectory. From the

game-changing advent of the iPhone and Android to the

meteoric rise of social media giants like Facebook and

Twitter, this era has witnessed a seismic shift in the

technological paradigm. The introduction of curved

displays and foldable smartphones marked a pivotal

moment in addressing the inherent limitations of

traditional flat-screen displays. This research

investigations precisely delves into the transformative

potential of these novel technologies, illuminating how

they have revolutionized the technological market since

their inception. Notably, tech conglomerates such as

Samsung, Honor, and Xiaomi have channeled significant

financial resources into the development and deployment

of these cutting-edge technologies, propelling the

industry towards a new era of innovation and consumer

engagement. As of now, Samsung has emerged as the

frontrunner, overshadowing its Chinese counterparts, but

the relentless investments by various companies are

poised to intensify the competitive landscape, promising

an expansive array of choices for discerning customers.

A key aspect of this research is the comprehensive

analysis of the various types of OS shortcomings [1-7],

offering valuable insights into which type of device

might be most suitable for users. Furthermore, it delves

into prevailing consumer trends, providing a forward-

looking perspective on the future trajectory of this

technology segment [8-11]. By inspecting the merits and

demerits of these innovative devices and distribution

systems, the research aims to equip users and industry

stakeholders with the knowledge necessary to navigate

this ever-evolving landscape effectively.

This comprehensive investigation also

examines computer operating systems (OS) and offers

insightful analysis of emerging trends in this dynamic

field [12,13]. OS functionality, serving as an

intermediary interface between computer hardware and

users, is a critical cornerstone in modern computing

systems [14-18]. This research aims to discern the

trajectory and projected evolution of OS, unraveling the

intricate concepts underpinning its architecture and

development over time. The investigative research

analysis delves into the intricate components of OS,

shedding light on the intricacies of its underlying

structures and providing comprehensive insights into

security issues associated with various types of OS

architectures. Moreover, the exploration offers a

compendium of best practices intended to bolster OS

security, advocating for a dual-layered security approach

[19]. This approach entails fortifying the OS with robust

security policies while simultaneously embedding

stringent security protocols within the hardware

architecture of the OS [20-26]. A significant revelation

of the research pertains to the identification of

contemporary OS trends, which encompass an array of

cutting-edge developments such as IoT OS, Cloud OS,

AI-powered OS, Blockchain OS, Hybrid OS, and

Container OS [27,28,29]. The analysis also precisely

weighs the strengths and weaknesses of these major OS

categories, enabling readers to gain a nuanced

understanding of their relative merits and limitations.

Furthermore, the research espouses a forward-thinking

approach, advocating for the conception of a universal

OS framework that accommodates diverse architectures,

fostering a scalable environment for potential expansion.

In an effort to address sustainability concerns, the

research highlights the integration of green computing

technologies within the design architecture, aimed at

mailto:zarifbinakhtarg@gmail.com
mailto:zarifbinakhtarg@gmail.com

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

59

mitigating power consumption issues and fostering

environmentally responsible computing practices. By

precisely addressing the intricacies of OS architectures

and their evolving landscape, this research offers a

holistic perspective that not only outlines the current

state of the field but also provides invaluable insights into

the potential pathways for future advancements and

innovation in the realm of operating systems for modern

computing systems.

METHODS AND EXPERIMENTAL

ANALYSIS
The methodology for this research follows a

systematic approach to investigate the impact of

operating systems (OS) on distribution systems and

computing. Initially, a comprehensive iterative

background research explorations with available

knowledge investigations was conducted to gather

existing knowledge and identify research gaps. Data

collection was performed using specific methods such as

surveys, experiments, and data mining techniques to

ensure relevance and accuracy. All the collected data

underwent pre-processing, which included cleaning,

normalization, and validation, to maintain quality and

relevance. The performance and visualization techniques

were evaluated using specific metrics, including system

throughput, latency, scalability, resource utilization, and

reliability. These metrics provided a benchmark to

compare the evaluated techniques against traditional and

existing computing approaches. This comparison

highlighted the effectiveness and efficiency of the

Operating Systems (OS) in enhancing technological

computing performance. Results and findings were

analyzed and interpreted in line with the research

objectives. The analysis discussed the implications of OS

advancements on technological computing performance

and efficiency, providing insights into the near future

developments. The findings demonstrated how OS could

enhance computing, influencing the interconnected

world of digital device peripherals. Finally, the research

summarized the findings, acknowledged the limitations

encountered, and suggested future research prospects.

These suggestions focused on areas that could benefit

from further investigation to enhance the understanding

and application of OS in distribution systems and

computing. By employing these specific methods and

metrics, this methodology ensures a comprehensive

exploration of the potential enhancements OS can bring

to computing, contributing to improved performance and

paving the way for accelerated innovations in the field.

BACKGROUND ITERATIVE RESEARCH

AND AVAILABLE KNOWLEDGE
An operating system (OS) is an essential system

software that manages computer hardware and software

resources, providing fundamental services for computer

programs. OSs play a critical role in facilitating

communication between applications and the hardware

components of a computer system, including memory

allocation and input/output functions.

They are mostly found across a wide range of

devices, from smartphones and video game consoles to

web servers and supercomputers. In the personal

computer market as of September 2023, Microsoft

Windows maintains a dominant market share of around

68%. macOS by Apple Inc. holds the second position

with approximately 20%, and Linux variants, including

ChromeOS, collectively account for about 7%. On the

other hand, in the mobile sector, Android leads with a

share of 68.92%, followed by Apple's iOS and iPadOS

with 30.42%, while other operating systems collectively

hold 0.6%. In the server and supercomputing sectors,

Linux distributions dominate, while other specialized

operating systems exist for embedded systems, real-time

processing, and security-focused applications. Different

types of operating systems cater to varying computing

needs. Single-tasking systems can handle only one

program at a time, while multi-tasking OSs allow the

concurrent execution of multiple programs. This is

achieved through time-sharing, where the processor time

is divided among different processes. Multi-tasking can

be preemptive or cooperative. Single-user systems

support only one user but can execute multiple programs

simultaneously. Multi-user systems facilitate the

interaction of multiple users with the system and allocate

resources accordingly.

Distributed systems manage a network of

computers, making them appear as a single unit by

distributing computations among connected computers.

Embedded systems which operate in small, resource-

constrained machines like PDAs, embedded OSs are

designed for efficiency and compactness. Windows CE

and Minix 3 are examples of embedded operating

systems. Real-time systems are the OSs that ensure

processing of events or data within specific time

constraints. They can be single-tasking or multi-tasking,

utilizing specialized scheduling algorithms to maintain

deterministic behavior. Library operating systems are

such systems which provide OS services in the form of

libraries, composing with application and configuration

code to form a unikernel—a specialized, single address

space machine image deployable to cloud or embedded

environments [12,13].

The history of operating systems dates back to

the 1950s when early computers were programmed for

specific tasks. As hardware evolved, basic OS features

were developed, leading to the emergence of modern and

complex operating systems in the 1960s. Early electronic

systems were programmed using mechanical switches

and plugboards, with no operating systems. The

introduction of high-level languages and machine

libraries in the late 1950s paved the way for the modern

concept of operating systems. Notable early examples

include GM-NAA I/O and the SHARE Operating

System [14,15,16]. Mainframe computers in the 1950s

pioneered key operating system features such as batch

processing, multitasking, and spooling. IBM's OS/360 in

the 1960s laid the foundation for a single OS spanning an

entire product line.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

60

Other significant mainframe OSs include

Burroughs MCP, UNIVAC EXEC, General Electric's

GECOS, and the Multiplexed Information and

Computing Service (Multics) developed by Bell Labs,

General Electric, and MIT. With the advent of

microcomputers, minimalistic operating systems like

CP/M and MS-DOS were developed in the 1970s and

1980s. The introduction of the Intel 80386 CPU chip in

1985 enabled microcomputers to run multitasking OSs.

The GNU Project, led by Richard Stallman,

aimed to create a complete free software replacement for

proprietary UNIX. Linus Torvalds's release of the Linux

kernel in 1991 marked a significant milestone, leading to

the development of the popular Linux OS. Microsoft

Windows, initially built on top of MS-DOS, emerged as

a dominant family of operating systems, gradually

transitioning to the Windows NT kernel. Windows

remains widely used, especially on personal computers,

although it faces competition from Linux and BSD in the

server market [17,18]. In addition to the major operating

systems like Unix, Linux, macOS, and Windows, various

other systems were once significant but have now

become obsolete or niche, including AmigaOS, OS/2,

classic Mac OS, BeOS, and others. Some systems like

z/OS, OpenVMS, and IBM i continue to be actively used

and developed, catering to specific enterprise needs.

Academic environments also use specific systems such

as MINIX and Singularity for educational and research

purposes. The development of these various operating

systems has significantly shaped the landscape of

modern computing [30].

The operating system, as a crucial layer

between user applications and computer hardware,

comprises several fundamental components that enable

the efficient functioning of a computer system. The

kernel, at the core of the operating system, serves as the

bridge connecting application software to the hardware

components. With the assistance of firmware and device

drivers, the kernel exerts control over the computer's

hardware devices, managing memory access, allocating

resources, and organizing data storage with file systems.

It further regulates the CPU's operational states for

optimal performance, ensuring the smooth execution of

various processes and applications. The execution of

application programs involves a systematic process

facilitated by the operating system. This process includes

the creation of a process by the kernel, where memory

space and resources are assigned, and program binary

code is loaded into memory. The operating system also

sets the priority for the process in multi-tasking

environments, ensuring efficient utilization of computing

resources. Through this mechanism, application

programs interact with users and hardware devices,

adhering to predefined rules and procedures incorporated

into the operating system [31]. Interrupts, both hardware

and software, play a crucial role in the responsiveness

and coordination of the operating system. Hardware

interrupts enable the CPU to handle asynchronous events

efficiently, allowing I/O devices to signal completion

without requiring continuous CPU polling.

On the other hand, software interrupts serve as

messages to processes, informing them of specific events

or errors, such as time slices, error conditions, or user-

initiated interruptions. These interrupts ensure the

synchronization of processes, aiding in the seamless

execution of multiple tasks within the system. Interrupt-

driven I/O, a mechanism triggered by user inputs such as

keystrokes or mouse movements, facilitates immediate

responses to user actions, ensuring real-time interaction

between users and the system. Additionally, direct

memory access (DMA) allows high-speed data transfer

between devices like hard disk drives and memory,

circumventing the need for CPU intervention for each

data transfer. The operating system manages these

processes efficiently, enabling the seamless exchange of

data and information between hardware devices and

memory. The various components of the operating

system work in tandem to provide a stable and efficient

platform for the execution of applications, the

management of hardware resources, and the seamless

coordination of input and output operations. This

collaborative functionality ensures a smooth and

responsive user experience while harnessing the full

potential of the computer's hardware capabilities [32].

The concept of operating systems is integral to the

functioning of modern computers. Operating systems

facilitate the interaction between the user and the

hardware, providing a range of services including

memory management, multitasking, disk access,

networking, and security. Two key operating modes, user

mode and supervisor mode, govern the level of access to

resources, with the supervisor mode providing

unrestricted access to machine resources and the user

mode setting limits on instructions and direct access.

Memory management is critical to ensure that programs

don't interfere with one another, with memory protection

serving as a key mechanism to restrict a process's access

to the computer's memory [33,34]. Techniques such as

memory segmentation and paging enable the kernel to

control the memory accessed by different programs.

Virtual memory, a crucial concept, allows the kernel to

manage memory effectively by temporarily storing less

frequently accessed memory on disks or other media.

This makes space available for other programs, giving

the illusion of a larger RAM capacity. Multitasking is

another vital function that allows for the simultaneous

execution of multiple independent computer programs,

commonly achieved through time-sharing. Early models

of multitasking were cooperative, allowing programs to

execute for as long as they wanted, which could

potentially lead to system crashes. Modern operating

systems implement preemptive multitasking, ensuring all

programs receive regular time on the CPU by utilizing a

timed interrupt [35].

File systems enable the organization and

management of files on a computer, with a hierarchical

structure of directories or folders. Various file systems

and their characteristics, such as naming conventions and

access permissions, present challenges for implementing

a single interface for all file systems.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

61

To ensure compatibility, most operating

systems provide support for widely used file systems and

often require third-party drivers for others. Device

drivers play a critical role in enabling interaction with

hardware devices. They act as a mediator between the

operating system and hardware devices, translating

operating system calls into device-specific commands.

Networking support in operating systems allows

computers to share resources across a network, enabling

functions like file sharing and remote access. Security

measures within operating systems include

authentication, authorization, and auditing, crucial for

protecting sensitive data from unauthorized access

[36,37]. Operating systems provide user interfaces to

interact with computers, ranging from command-line

interfaces to graphical user interfaces (GUIs). The

evolution of GUIs has seen significant advancements,

with many modern systems incorporating GUIs for better

user experiences. Real-time operating systems are

designed for applications with fixed deadlines,

commonly used in embedded systems and industrial

control. Operating system development as a hobby has

led to the creation of unique systems independent of

existing ones, often driven by individuals or small groups

with shared interests. Ensuring software portability

across various operating systems often requires

adaptation or the use of software platforms like Java or

Qt, which can minimize the costs of supporting diverse

operating systems. Standardization efforts such as

POSIX and OS abstraction layers have aimed to reduce

the complexities of porting applications across different

operating systems. To provide an idea concerning the

perspective of the matter figure 1 provides an illustrative

representation of the retrospect.

FIGURE 1. An overview of OS and its associated

device integrations with distributions

THE DIFFERENT TYPES OF OPERATING

SYSTEMS (OS)
Operating systems play a critical role in the

functioning of computers and devices, providing the

necessary software framework for managing hardware

and software resources. Several types of operating

systems have been developed to cater to different

computing requirements and contexts. Each type has its

own unique characteristics, benefits, and drawbacks,

catering to a diverse range of applications and user needs.

Batch operating systems, typically utilized in

the early days of computing, facilitated the processing of

a series of similar jobs grouped together into batches.

Despite their effectiveness in managing large workloads

and allowing multiple users to share systems, batch

systems posed challenges in terms of debugging, job

failure impact, and cost, making them less favorable in

contemporary computing environments. Distributed

operating systems, a recent technological advancement,

enable the connection of multiple independent computers

through a unified communication channel, providing

benefits such as fault tolerance, load distribution, and

increased scalability. However, their complex software

and high setup costs can present significant challenges,

particularly in the event of network failures. Multitasking

operating systems, also known as time-sharing systems,

allow multiple users to efficiently access the CPU by

allocating specific time periods for task execution. While

offering equitable access and minimal idle time for the

CPU, multitasking systems face issues such as data

security concerns and potential communication

problems, hindering their seamless operation. Network

operating systems manage networking functions within a

server-based environment, facilitating resource sharing,

security management, and remote access for multiple

users. Despite their stability and upgradability, these

systems entail high server costs and maintenance

requirements, making users heavily reliant on centralized

operations. Real-time operating systems cater to time-

sensitive applications, with hard real-time systems

serving critical, time-constrained operations, and soft

real-time systems addressing less stringent time

constraints. While delivering optimal resource utilization

and memory management, real-time systems are limited

by expensive resources, complex algorithms, and

restricted task capacity, presenting challenges in thread

priority management and task switching. Mobile

operating systems are designed for smartphones, tablets,

and other mobile devices, allowing users to access

various applications on the go. While providing user

convenience, some mobile operating systems may

exhibit limitations, such as poor battery performance and

user interface issues, impacting overall user experience.

In addition to the types of operating systems,

distinctions can be made based on single-tasking versus

multi-tasking functionalities, desktop versus mobile

compatibility, and open-source versus proprietary

development models, each catering to specific user

requirements and preferences. These diverse types and

distinctions reflect the continuous evolution and

adaptation of operating systems to meet the diverse needs

of modern computing environments.

OS FUNCTIONALITIES, POPULARITY AND

MARKET SHARE
Operating systems serve as the fundamental

software framework for managing hardware and

software resources, enabling the efficient functioning of

computers and devices.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

62

Their functions encompass critical tasks such as

resource allocation, memory management, device

management, user interface management, and security

management, ensuring smooth and secure operations for

users and applications. Resource allocation and

management involve the efficient distribution of CPU,

memory, and disk space among various applications,

prioritizing tasks based on their importance. Memory

management ensures optimal memory utilization and

efficient sharing among running programs, facilitating

seamless performance. Device management handles

input and output devices, ensuring their compatibility

and functionality within the system. User interface

management provides a graphical user interface,

enabling user interactions through windows, menus, and

other visual elements. Security management safeguards

systems and data through user authentication, firewalls,

and antivirus software, protecting against unauthorized

access and threats. Among the most widely used

operating systems, Windows, macOS, Linux, iOS, and

Android cater to diverse user preferences and

requirements, offering a range of features and

functionalities, from user-friendly interfaces to open-

source customizability and robust security measures.

Operating system evolution has traversed various

generations, each marked by distinct technological

advancements. From the earliest vacuum tube-based

systems and machine language programming to

contemporary AI-driven systems and quantum

computing, operating systems have continually evolved

to accommodate the growing complexities of computing

tasks and user demands. The kernel is the fundamental

program at the heart of a computer’s operating system,

exercising complete control over all system operations

and hardware management. It serves as the intermediary

between the computer hardware and software

applications, ensuring smooth and efficient functionality.

There are five distinct types of kernels: microkernel,

monolithic kernel, hybrid kernel, exokernel, and

nanokernel. Each type has unique characteristics and

design philosophies, which influence their functionality,

performance, and application. A microkernel

architecture is designed to contain only the most essential

functions of the operating system, such as low-level

address space management, thread management, and

inter-process communication (IPC). In a microkernel,

user services and kernel services are implemented in

separate address spaces. This separation enhances

system stability and security, as a failure in user services

does not directly affect kernel services. However, the

design and implementation of a microkernel are

complex, requiring more code and effort. Although

microkernels are smaller in size and easier to extend,

they typically suffer from lower execution speed due to

the overhead of frequent context switches and message

passing. Examples of operating systems using

microkernels include Mac OS X. Contrastingly, a

monolithic kernel runs the entire operating system as a

single program in kernel mode, with both user services

and kernel services sharing the same address space.

This design simplifies implementation and can

lead to higher execution speeds because there is no need

for context switching or message passing between user

and kernel space. However, monolithic kernels are larger

and more challenging to maintain and extend. A failure

in any component within a monolithic kernel can

potentially lead to a system-wide failure, making them

less robust compared to microkernels. Debugging is also

more difficult due to the integrated nature of the kernel

components. Examples of monolithic kernels include

Microsoft Windows 95.

A hybrid kernel combines elements of both

microkernel and monolithic kernel architectures. It aims

to take advantage of the performance benefits of

monolithic kernels while maintaining the modularity and

resilience of microkernels. This approach allows for a

more balanced trade-off between performance and

reliability. An exokernel architecture is designed to give

application-level software greater control over hardware

resources. By minimizing the abstractions provided by

the kernel, exokernels allow applications to directly

manage resources, potentially improving performance

for specialized tasks. Nanokernels are even more

minimalistic than microkernels, providing only the most

fundamental services necessary to manage hardware

resources. They delegate as much functionality as

possible to higher-level software, which runs in user

space. Understanding the different types of kernels and

their respective architectures is crucial for optimizing

system performance, stability, and security. Each kernel

type offers distinct advantages and challenges,

influencing the design decisions for various operating

systems. The choice between microkernel, monolithic

kernel, hybrid kernel, exokernel, and nanokernel

architectures depends on the specific requirements and

constraints of the computing environment.

The progression through multiple generations

underscores the continual integration of cutting-edge

technologies and the potential for future advancements

that could revolutionize computing paradigms and

interactions, possibly leading to seamless integration

between human cognition and computing systems. To

better understand the perspective of the matter figure 2

provides the global stat of OS market share and table 1

provides the illustration of 32bit and 64bit OS variations

in terms of parameters.

TABLE 1. 32-bit OS vs. 64-bit OS

Parameter 32-Bit OS 64-Bit OS

Data and

Storage

The 32bit OS can

store and manage
less data than the

64bit OS, as its name

would imply. It
mainly addresses a

total maximum of

4,294,967,296 bytes
(4 GB) of RAM in

more detail.

In contrast, the 64bit

OS has a larger data

handling capacity than
the 32bit OS. It

indicates that a total of

264 memory addresses,
or as in 18 quintillion

gigabytes of RAM, can

be addressed.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

63

Compatibility

of System

A 32-bit processor

system will run only
on 32-bit OS and not

on 64bit OS.

A 64-bit processor

system can run either a

32-bit or 64-bit OS

Application

Support

The 32-bit OS
support applications

with no hassle.

The 64-bit OS do not

support many of the

older hardware and

software applications.

Performance

Performance of the

32- bit OS is less

efficient.

Higher performance

than that of the 32-bit

processor.

Systems

Available

These support

Windows 7,

Windows XP,
Windows Vista,

Windows 8, and

Linux.

These support

Windows XP
Professional, Windows

7, Windows 8,

Windows 10, Windows
Vista, Linux, and Mac

OS X.

FIGURE 2. OS Market Share around the Globe

OS PROS AND CONS WITH RTOS
Operating systems play a critical role in

ensuring the efficient and correct use of a computer's

hardware, facilitating the simultaneous operation of

various applications, and managing the organization of

files and folders. They provide an intuitive user interface,

simplifying interactions between users and machines,

while also handling security measures to protect against

unauthorized access and data breaches. Operating

systems efficiently manage system resources, ensuring

that hardware components are utilized optimally and that

various applications have fair access to necessary

resources. Furthermore, they manage printing

operations, ensuring that documents and files are printed

accurately and efficiently. Operating systems serve as a

robust platform for software development, providing a

stable and consistent environment for the creation and

execution of diverse software applications. Despite their

numerous advantages, operating systems are not without

their drawbacks. They can be complex and challenging

to use, especially for individuals with limited technical

expertise, potentially posing barriers to entry for certain

users.

The cost associated with purchasing and

maintaining operating systems, along with the need for

regular updates and maintenance, can impose financial

burdens on organizations and individuals. Furthermore,

the inherent complexity of operating systems can render

them vulnerable to attacks from malicious users,

necessitating robust security measures and constant

vigilance to safeguard sensitive data and systems from

potential threats and breaches.

Real-Time Operating Systems (RTOS) serve as

specialized operating systems that execute multi-

threaded programs while adhering to stringent real-time

deadlines. Unlike the conventional notion of speed, the

"deadlines" in an RTOS pertain to the ability to predict

when specific tasks will run before their actual execution.

RTOS proves to be an invaluable tool, particularly for

complex embedded applications, offering support for

task isolation and enabling concurrent operations. Its

applications span various critical systems, including

defense applications like RADAR, airline reservation

systems, systems that demand immediate updating,

networked multimedia systems, air traffic control

systems, and command control systems. The seamless

execution and adherence to real-time constraints make

RTOS indispensable in scenarios where timely and

accurate data processing and decision-making are of

utmost importance.

HOW TO KNOW AND CHOOSE BEST OS
Selecting the most appropriate computer

operating system (OS) involves a careful evaluation of

several key factors to ensure compatibility and

functionality. The price of an OS is an essential

consideration, with options ranging from free, like

Linux, to paid systems like Windows and macOS.

Accessibility is another vital factor, with certain systems,

such as macOS and iOS, offering user-friendly

interfaces, while others, like Linux, can present a steeper

learning curve. The compatibility of an OS with desired

applications is crucial, as some systems support a

broader range of software compared to others.

Additionally, the security features of an OS should be

weighed, as certain systems offer stronger security

protocols than others.

When selecting an OS, it is critical to prioritize

robust memory management, ensuring efficient

utilization of system resources. Stability is paramount,

especially for individuals relying on their computers for

various tasks, whether business-related or for leisure

activities like gaming. The OS should be reliable,

avoiding frequent crashes and interruptions that could

hinder productivity or enjoyment. Support and cost are

equally important, with the understanding that paying for

an OS does not necessarily guarantee better performance

or assistance. Some free OS options offer robust support

channels, while certain paid systems may fall short on

delivering promised assistance.

Ultimately, the choice of an OS significantly

impacts the user experience, influencing the overall

functionality and performance of the computer.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

64

Considering factors such as usability, compatibility with

preferred applications, and the system's ability to support

various tools and customization options are crucial when

making this decision. Furthermore, understanding the

role of an operating system in organizing and managing

files and programs on the computer is fundamental to

selecting the most suitable option.

While there may not be a definitive answer to

the best OS, careful consideration of individual

requirements and preferences will guide users towards

making an informed choice and a conclusive decision.

OPERATING SYSTEMS (OS) SECURITY
Security is a critical aspect of any operating

system, ensuring the protection of valuable computer

resources, including the CPU, memory, disk space,

software programs, and data. Authentication is a

fundamental component of security, involving the

identification of each system user and their association

with executing programs. Operating systems employ

various authentication methods, such as

username/password combinations, user cards/keys, and

user attributes like fingerprints or eye retina patterns, to

ensure secure access.

One-time passwords enhance security protocols

by requiring unique passwords for each login attempt.

Implementations of one-time passwords involve the use

of random numbers, secret keys generated by hardware

devices, or network passwords sent to users' registered

mobile or email accounts. Program threats, such as

Trojan horses, trap doors, logic bombs, and viruses, pose

significant risks by enabling unauthorized access to user

credentials, introducing security vulnerabilities, or

causing system malfunctions. System threats, including

worms, port scanning, and denial of service attacks, can

disrupt network performance and compromise system

resources, resulting in severe consequences for users and

their data.

Computer security classifications, as

established by the U.S. Department of Defense Trusted

Computer System's Evaluation Criteria, categorize

security levels into four types: A, B, C, and D. Each

classification represents varying degrees of security

measures, with Type A offering the highest level of

assurance through formal design specifications and

verification techniques. Type B provides a mandatory

protection system, while Type C focuses on user

accountability and audit capabilities. Lastly, Type D

represents the lowest security level, offering minimal

protection and often associated with operating systems

such as MS-DOS and Windows 3.1. These security

classifications serve as vital benchmarks for evaluating

and modeling the security of computer systems and their

corresponding security solutions.

WINDOWS VS MACOS VS LINUX: AN

INVESTIGATIVE ANALYSIS
The comparison of three leading operating

systems, namely Windows, macOS, and Linux, reveals

distinctive features and suitability for various user

preferences and needs. Windows, known for its

versatility and widespread usage, is well-suited for

general productivity tasks, gaming, software

development, and multimedia creation.

With its user-friendly interface and robust

security protocols, Windows stands as a popular choice

for users who prioritize compatibility, diverse software

support, and extensive hardware compatibility. The

system's robust security features, including Windows

Defender and regular updates, contribute to a secure

computing environment, although risks can arise from

the installation of potentially malicious software.

MacOS, specifically designed for Apple

devices, is celebrated for its seamless integration with the

Apple ecosystem, catering to the needs of creative

professionals and artists. Recognized for its enhanced

security and privacy measures, macOS offers a visually

appealing interface and top-notch performance.

However, its application compatibility may be limited

compared to Windows, and users might encounter

challenges in running certain software programs not

specifically designed for macOS. The system's superior

security measures, such as Gatekeeper and FileVault,

contribute to a secure computing experience,

safeguarding users' personal data from external threats.

Linux, an open-source powerhouse, offers

unparalleled flexibility and customization options,

making it a favorite among tech-savvy users, developers,

and system administrators. Known for its stability and

performance, Linux is widely used for server

management, web development, and data analysis tasks.

Its strong focus on security and privacy, fostered by its

open-source nature, provides users with granular control

over system permissions and comprehensive protection

against unwanted surveillance. Despite the availability of

numerous applications and growing developer support,

Linux may present challenges for users accustomed to

more mainstream operating systems due to its unique

customization options and learning curve for

newcomers.

Each operating system offers distinct

advantages and serves particular user needs, whether it

be Windows' compatibility and user-friendliness,

macOS' seamless integration within the Apple ecosystem

and enhanced security, or Linux's flexibility,

customization, and robust security features.

By understanding the specific requirements and

preferences of users, the choice of an operating system

can be tailored to individual needs, providing an

optimized computing experience and meeting diverse

computing demands. For a representative illustration

figure 3 provides an insight into the matter.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

65

FIGURE 3. Windows vs. macOS vs. Linux the

illustrative representation

RESULTS, FINDINGS, OS CHALLENGES

AND FUTURE DIRECTIONS
The realm of modern operating systems is

confronted with an array of challenges that

predominantly revolve around security, resource

management, and device compatibility. Notably, security

and privacy concerns have become paramount, as the

prevalence of vulnerabilities and exploits, including

malware and ransomware, constantly jeopardize the

integrity of systems. Additionally, the rising

apprehensions regarding user privacy have necessitated

the implementation of stringent security measures, in

response to issues such as data breaches and

unauthorized data collection. Efficient resource

management has emerged as a critical facet for

optimizing system performance, with memory

management techniques such as virtual memory and

paging playing a pivotal role in effectively managing

limited physical memory. Moreover, the proliferation of

hardware devices has posed a significant obstacle for

operating systems, demanding the deployment of

hardware abstraction layers to ensure uniform

management of devices with distinct interfaces.

Furthermore, the integration of device drivers has

become essential for facilitating communication between

hardware and software, while the plug-and-play

functionality has streamlined the process of device

installation and configuration. Embracing

containerization technologies like Docker and

Kubernetes has ushered in a new era of lightweight and

isolated environments for applications, augmenting

scalability and portability within the operating system

landscape. The concept of virtualization, encompassing

both hardware and software virtualization, has enabled

the simultaneous operation of multiple operating systems

or instances on a single physical machine, amplifying the

versatility of computing environments. Operating

systems, functioning as system software, assume the

crucial role of managing computer hardware and

software resources, while providing fundamental

services for computer programs across diverse devices,

from cellular phones and video game consoles to web

servers and supercomputers.

Notably, Linux distributions have carved a

dominant niche in the server and supercomputing

sectors, underscoring their versatility and robust

capabilities. In light of the burgeoning Internet of Things

(IoT) landscape, operating systems are poised to evolve

further, necessitating adaptation to accommodate the

unique demands of IoT devices. Embedded operating

systems, such as FreeRTOS and Zephyr, have garnered

significance owing to their prioritization of low resource

consumption and real-time responsiveness, enabling

seamless integration of IoT devices into networks. As the

future unfolds, operating systems will continue to

underscore the importance of robust security measures,

with secure booting, sandboxing, and secure enclaves

emerging as pivotal components in safeguarding system

integrity and user privacy. The continued evolution of

operating systems is poised to reshape the technological

landscape, ushering in more secure, efficient, and

adaptable computing environments.

The current structure of modern operating

systems, particularly in the Unix/Linux domain, is

closely entwined with the C programming language and

a shell environment, leading to a complex and often

brittle software ecosystem. The weak type systems of

both C and the shell, coupled with their reliance on

configuration files, make it challenging to verify the

correctness of programs and system configurations in

advance. Consequently, troubleshooting or configuring a

Linux system often involves blindly following online

instructions, creating an environment where errors can

easily disrupt the system's functionality. This fragility

has created an inaccessible hacking environment for

many users, contradicting the open-source philosophy

that advocates for users to have full control over their

machines. The comparison between a program like

'my_server' configured through a file-based approach

and one written in a strongly-typed programming

language highlights the stark contrast in robustness and

predictability. While both scenarios may accomplish the

task of running the server, the latter provides a

significantly reduced risk of failure and allows for the

verification of the program's validity beforehand. This

distinction underscores the need for a paradigm shift in

system configuration, suggesting a move toward a single

declarative-style program for the entire system, akin to

what NixOS is pursuing, yet with a stronger emphasis on

pre-verification. The notion of content-based addressing

and the shift from trusted to untrusted content and

infrastructure are also critical elements in the

reimagining of a modern operating system. Embracing

the principle of identifying programs by the hash of their

content fosters a more accessible and streamlined

approach to program distribution, promoting the ease of

program integration without extensive bureaucratic

processes. Leveraging technologies like WebAssembly

for cross-platform compatibility and sandboxing

programs to isolate them from system resources emerges

as a fundamental direction for enhancing security and

predictability.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

66

The idea of long-running daemons rather than

short-lived programs aligns with the original Unix

philosophy of specialized tools accomplishing specific

tasks efficiently. This concept emphasizes the need for a

shift in perspective, viewing the system as a collection of

modules in the context of a programming language rather

than isolated programs. Sandboxing technologies, such

as Docker containers and virtualization, have arisen as a

response to the existing operating system's limitations in

isolating programs effectively. However, the challenge

remains to ensure a default level of isolation and security

within the system, guaranteeing that users can execute

programs without jeopardizing the system's stability or

their data. Furthermore, redefining the traditional

concept of a file system in the context of cloud

computing and content-based addressing offers the

potential for a simplified and more transparent user

experience. Eliminating the dependence on a shared

global file system and reimagining the purpose and

structure of files could significantly enhance the

accessibility and reliability of data management within

the system. Ultimately, the pursuit of a modern operating

system revolves around creating an accessible, robust,

and predictable environment that empowers users to

navigate and configure their systems with ease and

confidence.

DISCUSSIONS
In the world of operating systems, Windows,

macOS, and Linux each come with their own set of

specific hardware requirements. While Windows is

generally compatible with a wide array of PC

configurations, macOS is purpose-built for Apple

computers. Linux, known for its broader hardware

compatibility, still requires users to verify system

requirements before installation. One critical factor to

consider is software compatibility. Not all applications

are universally compatible across different operating

systems. Windows boasts the broadest range of software

compatibility due to its widespread use, while macOS

caters to a robust selection of creative and multimedia

applications. Linux, although increasingly supported by

developers, may not have direct alternatives for

specialized or exclusive Windows/macOS applications.

Cross-platform compatibility is also a consideration.

Some Windows software can run on Linux using

compatibility layers like Wine or virtualization software,

although not all applications function seamlessly. While

Linux has made significant strides in user-friendliness, it

may still demand a bit more technical know-how

compared to the more mainstream Windows and macOS

systems. Regarding gaming, Windows is the preferred

operating system, providing extensive game libraries and

strong driver support. macOS, although offering a

smaller gaming selection, still supports several popular

titles. Linux has seen substantial progress in the gaming

realm, with a growing number of games and

compatibility layers like Steam's Proton, enabling

gaming on the platform.

In other words, selecting the appropriate

operating system depends on individual priorities, needs,

and preferences. Windows, macOS, and Linux cater to

different user requirements, with each system offering

unique features. Windows excels in versatility and

gaming capabilities, macOS in elegance and security

within the Apple ecosystem, and Linux in flexibility,

customization, stability, and security. Therefore,

understanding one’s specific requirements is crucial

when making an informed decision, as the choice of

operating system significantly impacts ones overall

digital experience.

CONCLUSIONS
Operating systems play a crucial role in the

functioning of computers, managing resources,

providing user interfaces, and ensuring security.

Windows, macOS, and Linux are three prominent

operating systems, each with distinct strengths and

weaknesses. Windows stands out for its versatility,

extensive software compatibility, and robust gaming

capabilities, making it an excellent choice for a wide

range of users. macOS, designed exclusively for Apple

hardware, offers a seamless, visually appealing interface,

robust security, and seamless integration within the

Apple ecosystem, making it ideal for creative

professionals and artists. Linux, known for its open-

source nature, provides unmatched flexibility,

customization options, and strong security, making it a

preferred choice for tech-savvy users, developers, and

system administrators. When selecting an operating

system, factors such as price, accessibility, compatibility,

security, and support should be considered. Windows

enjoys widespread compatibility and a user-friendly

interface, catering to diverse user needs. macOS, known

for its stringent security measures and seamless

integration within the Apple ecosystem, appeals to

creative professionals and users valuing elegant design.

Linux, with its open-source nature and strong security

focus, is suitable for those prioritizing customization,

privacy, and stability, particularly in server

environments. Each operating system caters to specific

user requirements, making it essential to assess

individual preferences and needs when making a choice.

Considerations such as software compatibility, hardware

requirements, and cross-platform usability are crucial.

Windows offers the broadest software compatibility,

macOS specializes in creative and multimedia

applications, while Linux provides a growing selection

of software options, often necessitating the use of

compatibility layers or virtualization software for cross-

platform compatibility. While Windows is widely

recognized as the go-to operating system for gaming,

macOS and Linux have also made significant strides in

gaming support, albeit with a more limited selection of

titles. Understanding these factors is essential for making

an informed decision, as the choice of an operating

system significantly impacts the overall digital

experience, productivity, and security of a computer

system.

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

67

Operating system standards are continually

evolving to meet the demands of advancing technologies,

security, performance, and user experience. A significant

trend in operating system design is the move towards

modular and microkernel architectures, aiming to strike

a balance between functionality and complexity. While

monolithic kernels provide high performance and

compatibility, they also raise concerns regarding bugs,

crashes, and security vulnerabilities. In contrast, modular

or microkernel architectures, as seen in operating

systems like Windows NT, Linux, and MINIX, prioritize

reducing size, improving reliability, and enhancing

security, although they may introduce overhead and

communication challenges. Additionally, the increasing

prevalence of cloud and edge computing is influencing

the future of operating system standards. These

technologies facilitate remote data processing and

storage, emphasizing scalability and efficiency.

Operating systems are required to adapt to the demands

of distributed and parallel computing, network and data

management, as well as security and encryption.

Examples such as Chrome OS, Android, and Azure

Sphere demonstrate the integration of these principles.

Moreover, the rise of artificial intelligence (AI) and

machine learning (ML) with deep learning (DL) is

shaping operating system standards by enabling complex

pattern analysis, task automation, and optimization.

Operating systems must integrate AI and ML capabilities

into core functions, providing development tools and

frameworks for AI and ML applications. macOS, iOS,

and Linux showcase the incorporation of AI and ML

features within their systems. User-centric and adaptive

design represents another crucial aspect influencing the

future of operating system standards. This design

philosophy prioritizes improving usability, accessibility,

and personalization, catering to changing user needs and

preferences. Operating systems achieve this by

incorporating features like voice and gesture control,

biometric authentication, customization options, and

context-awareness. Examples such as Windows 10,

Ubuntu, and HarmonyOS exemplify the implementation

of user-centric and adaptive design principles. The aspect

of security and privacy is of paramount importance in

shaping the future of operating systems. Operating

systems are increasingly focusing on implementing

robust security features such as encryption,

authentication, authorization, sandboxing, firewall,

antivirus, and update mechanisms. Adherence to data

protection regulations such as GDPR and CCPA is also

critical. Operating systems like Qubes OS, Tails, and iOS

emphasize security and privacy as fundamental

components of their standards, ensuring protection

against unauthorized access and maintaining user

privacy.

ACKNOWLEDGMENTS
The main prospect and the scope for this

research was conducted with the idea perspective

experimentations along with the manuscript writing was

done by the author himself. All the data sources which

have been retrieved and resourced for the conduction of

this research exploration are mentioned and referenced

where appropriate.

REFERENCES
[1] Microsoft. Windows Secure Channel Denial of

Service Vulnerability. 2023. Available online:

https://msrc.microsoft.com/update-guide/en-

US/vulnerability/CVE-2023-21813 (accessed on 1

June 2023).

[2] Research, G.S. Linux (Ubuntu)–Other Users

Coredumps Can Be Read via Setgid Directory and

killpriv Bypass. 2018. Available online:

https://www.exploit-db.com/exploits/45033

(accessed on 1 June 2023).

[3] Gorbenko, A.; Romanovsky, A.; Tarasyuk, O.;

Biloborodov, O. Experience report: Study of

vulnerabilities of enterprise operating systems. In

Proceedings of the 2017 IEEE 28th International

Symposium on Software Reliability Engineering

(ISSRE), Toulouse, France, 23–26 October 2017;

IEEE: New York, NY, USA, 2017; pp. 205–215.

[Google Scholar]

[4] Cheikes, B.A.; Waltermire, D.; Kent, K.A.;

Waltermire, D. Common Platform Enumeration:

Naming Specification Version 2.3; US Department

of Commerce, National Institute of Standards and

Technology: Gaithersburg, MD, USA, 2011.

Available online:

https://csrc.nist.gov/publications/detail/nistir/7695/

final (accessed on 2 June 2023).

[5] Vander-Pallen, M.A.; Addai, P.; Isteefanos, S.;

Mohd, T.K. Survey on types of cyber attacks on

operating system vulnerabilities since 2018

onwards. In Proceedings of the 2022 IEEE World

AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9

June 2022; IEEE: New York, NY, USA, 2022; pp.

1–7. [Google Scholar]

[6] Kocaman, Y.; Gonen, S.; Baricskan, M.A.;

Karacayilmaz, G.; Yilmaz, E.N. A novel approach

to continuous CVE analysis on enterprise operating

systems for system vulnerability assessment. Int. J.

Inf. Technol. 2022, 14, 1433–1443. [Google

Scholar] [CrossRef]

[7] Sonmez, F.O.; Hankin, C.; Malacaria, P. Attack

Dynamics: An Automatic Attack Graph Generation

Framework Based on System Topology, CAPEC,

CWE, and CVE Databases. Comput. Secur. 2022,

123, 102938. [Google Scholar]

[8] Niu, S.; Mo, J.; Zhang, Z.; Lv, Z. Overview of linux

vulnerabilities. In Proceedings of the 2nd

International Conference on Soft Computing in

Information Communication Technology, Taipei,

Taiwan, 31 May–1 June 2014; Atlantis Press:

Dordrecht, The Netherlands, 2014; pp. 225–228.

[Google Scholar]

[9] Kaluarachchilage, P.K.H.; Attanayake, C.;

Rajasooriya, S.; Tsokos, C.P. An analytical

approach to assess and compare the vulnerability

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21813
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21813
https://www.exploit-db.com/exploits/45033
https://scholar.google.com/scholar_lookup?title=Experience+report:+Study+of+vulnerabilities+of+enterprise+operating+systems&conference=Proceedings+of+the+2017+IEEE+28th+International+Symposium+on+Software+Reliability+Engineering+(ISSRE)&author=Gorbenko,+A.&author=Romanovsky,+A.&author=Tarasyuk,+O.&author=Biloborodov,+O.&publication_year=2017&pages=205%E2%80%93215
https://csrc.nist.gov/publications/detail/nistir/7695/final
https://csrc.nist.gov/publications/detail/nistir/7695/final
https://scholar.google.com/scholar_lookup?title=Survey+on+types+of+cyber+attacks+on+operating+system+vulnerabilities+since+2018+onwards&conference=Proceedings+of+the+2022+IEEE+World+AI+IoT+Congress+(AIIoT)&author=Vander-Pallen,+M.A.&author=Addai,+P.&author=Isteefanos,+S.&author=Mohd,+T.K.&publication_year=2022&pages=1%E2%80%937
https://scholar.google.com/scholar_lookup?title=A+novel+approach+to+continuous+CVE+analysis+on+enterprise+operating+systems+for+system+vulnerability+assessment&author=Kocaman,+Y.&author=Gonen,+S.&author=Baricskan,+M.A.&author=Karacayilmaz,+G.&author=Yilmaz,+E.N.&publication_year=2022&journal=Int.+J.+Inf.+Technol.&volume=14&pages=1433%E2%80%931443&doi=10.1007/s41870-021-00840-6
https://scholar.google.com/scholar_lookup?title=A+novel+approach+to+continuous+CVE+analysis+on+enterprise+operating+systems+for+system+vulnerability+assessment&author=Kocaman,+Y.&author=Gonen,+S.&author=Baricskan,+M.A.&author=Karacayilmaz,+G.&author=Yilmaz,+E.N.&publication_year=2022&journal=Int.+J.+Inf.+Technol.&volume=14&pages=1433%E2%80%931443&doi=10.1007/s41870-021-00840-6
https://doi.org/10.1007/s41870-021-00840-6
https://scholar.google.com/scholar_lookup?title=Attack+Dynamics:+An+Automatic+Attack+Graph+Generation+Framework+Based+on+System+Topology,+CAPEC,+CWE,+and+CVE+Databases&author=Sonmez,+F.O.&author=Hankin,+C.&author=Malacaria,+P.&publication_year=2022&journal=Comput.+Secur.&volume=123&pages=102938
https://scholar.google.com/scholar_lookup?title=Overview+of+linux+vulnerabilities&conference=Proceedings+of+the+2nd+International+Conference+on+Soft+Computing+in+Information+Communication+Technology&author=Niu,+S.&author=Mo,+J.&author=Zhang,+Z.&author=Lv,+Z.&publication_year=2014&pages=225%E2%80%93228

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

68

risk of operating systems. Int. J. Comput. Netw. Inf.

Secur. 2020, 12, 1. [Google Scholar] [CrossRef]

[10] Siwakoti, Y.R.; Bhurtel, M.; Rawat, D.B.; Oest, A.;

Johnson, R. Advances in IoT Security:

Vulnerabilities, Enabled Criminal Services,

Attacks and Countermeasures. IEEE Internet

Things J. 2023, 10, 11224–11239. [Google

Scholar] [CrossRef]

[11] Gorbenko, A.; Romanovsky, A.; Tarasyuk, O.;

Biloborodov, O. From analyzing operating system

vulnerabilities to designing multiversion intrusion-

tolerant architectures. IEEE Trans. Reliab. 2019,

69, 22–39. [Google Scholar] [CrossRef] [Green

Version]

[12] Stallings (2005). Operating Systems, Internals and

Design Principles. Pearson: Prentice Hall. p. 6.

[13] Dhotre, I.A. (2009). Operating Systems. Technical

Publications. p. 1.

[14] "Desktop Operating System Market Share

Worldwide". StatCounter Global Stats. Archived

from the original on 2 October 2023. Retrieved 3

October 2023.

[15] "Mobile & Tablet Operating System Market Share

Worldwide". StatCounter Global Stats. Retrieved 2

October 2023.

[16] "VII. Special-Purpose Systems - Operating System

Concepts, Seventh Edition [Book]".

www.oreilly.com. Archived from the original on 13

June 2021. Retrieved 8 February 2021.

[17] "Special-Purpose Operating Systems - RWTH

AACHEN UNIVERSITY Institute for Automation

of Complex Power Systems - English".

www.acs.eonerc.rwth-aachen.de. Archived from

the original on 14 June 2021. Retrieved 8 February

2021.

[18] Lorch, Jacob R.; Smith, Alan Jay (1996). "Reducing

processor power consumption by improving

processor time management in a single-user

operating system". Proceedings of the 2nd annual

international conference on Mobile computing and

networking. New York, NY, US: ACM. pp. 143–

154. doi:10.1145/236387.236437. ISBN

089791872X.

[19] Akhtar,Z.(2024).Securing Operating Systems (OS):

A Comprehensive Approach to Security with Best

Practices and Techniques. International Journal of

Advanced Network, Monitoring and Controls,9(1)

100-111. https://doi.org/10.2478/ijanmc-

2024-0010

[20] Javed, F.; Afzal, M.K.; Sharif, M.; Kim, B. Internet

of Things (IoT) Operating Systems Support,

Networking Technologies, Applications, and

Challenges: A Comparative Review. IEEE

Commun. Surv. Tutor. 2018, 20, 2062–2100.

[Google Scholar] [CrossRef]

[21] Asghar, A.; Farooq, H.; Imran, A. Self-Healing in

Emerging Cellular Networks: Review, Challenges,

and Research Directions. IEEE Commun. Surv.

Tutor. 2018, 20, 1682–1709. [Google Scholar]

[CrossRef]

[22] Li, L.; Zhao, G.; Blum, R.S. A Survey of Caching

Techniques in Cellular Networks: Research Issues

and Challenges in Content Placement and Delivery

Strategies. IEEE Commun. Surv. Tutor. 2018, 20,

1710–1732. [Google Scholar] [CrossRef]

[23] Naik, G.; Liu, J.; Park, J.J. Coexistence of Wireless

Technologies in the 5 GHz Bands: A Survey of

Existing Solutions and a Roadmap for Future

Research. IEEE Commun. Surv. Tutor. 2018, 20,

1777–1798. [Google Scholar] [CrossRef]

[24] Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog

Computing: Fundamental, Network Applications,

and Research Challenges. IEEE Commun. Surv.

Tutor. 2018, 20, 1826–1857. [Google Scholar]

[CrossRef]

[25] MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S.

V2X Access Technologies: Regulation, Research,

and Remaining Challenges. IEEE Commun. Surv.

Tutor. 2018, 20, 1858–1877. [Google Scholar]

[CrossRef]

[26] Dunkels, A. Full TCP/IP for 8-bit Architectures. In

Proceedings of the 1st International Conference on

Mobile Systems, Applications and Services, San

Francisco, CA, USA, 5–8 May 2003; pp. 85–98.

[Google Scholar] [CrossRef]

[27] Al-Boghdady, A.; Wassif, K.; El-Ramly, M. The

Presence, Trends, and Causes of Security

Vulnerabilities in Operating Systems of IoT’s Low-

End Devices. Sensors 2021, 21, 2329.

https://doi.org/10.3390/s21072329

[28] Bazuku , R., Anab , A., Gyemerah , S., & Daabo ,

M. I. (2023). An Overview of Computer Operating

Systems and Emerging Trends. Asian Journal of

Research in Computer Science, 16(4), 161–177.

https://doi.org/10.9734/ajrcos/2023/v16i4

380

[29] X. Rong, "Design and Implementation of Operating

System in Distributed Computer System Based on

Virtual Machine," 2020 International

Conference on Advance in Ambient

Computing and Intelligence (ICAACI),

Ottawa, ON, Canada, 2020, pp. 94-97, doi:

10.1109/ICAACI50733.2020.00024.

[30] Mishra, B.; Singh, N.; Singh, R. (2014). "Master-

slave group based model for co-ordinator selection,

an improvement of bully algorithm". International

Conference on Parallel, Distributed and Grid

Computing (PDGC). pp. 457–460.

doi:10.1109/PDGC.2014.7030789. ISBN 978-1-

4799-7682-9. S2CID 13887160.

[31] Hansen, Per Brinch, ed. (2001). Classic Operating

Systems. Springer. pp. 4–7. ISBN 0-387-95113-X.

Archived from the original on 11 January 2023.

Retrieved 19 December 2020.

[32] "Intel® Microprocessor Quick Reference Guide -

Year". www.intel.com. Archived from the original

on 25 April 2016. Retrieved 24 April 2016.

[33] Arthur, Charles (5 January 2011). "'Windows 8' will

run on ARM chips - but third-party apps will need

https://scholar.google.com/scholar_lookup?title=An+analytical+approach+to+assess+and+compare+the+vulnerability+risk+of+operating+systems&author=Kaluarachchilage,+P.K.H.&author=Attanayake,+C.&author=Rajasooriya,+S.&author=Tsokos,+C.P.&publication_year=2020&journal=Int.+J.+Comput.+Netw.+Inf.+Secur.&volume=12&pages=1&doi=10.5815/ijcnis.2020.02.01
https://doi.org/10.5815/ijcnis.2020.02.01
https://scholar.google.com/scholar_lookup?title=Advances+in+IoT+Security:+Vulnerabilities,+Enabled+Criminal+Services,+Attacks+and+Countermeasures&author=Siwakoti,+Y.R.&author=Bhurtel,+M.&author=Rawat,+D.B.&author=Oest,+A.&author=Johnson,+R.&publication_year=2023&journal=IEEE+Internet+Things+J.&volume=10&pages=11224%E2%80%9311239&doi=10.1109/JIOT.2023.3252594
https://scholar.google.com/scholar_lookup?title=Advances+in+IoT+Security:+Vulnerabilities,+Enabled+Criminal+Services,+Attacks+and+Countermeasures&author=Siwakoti,+Y.R.&author=Bhurtel,+M.&author=Rawat,+D.B.&author=Oest,+A.&author=Johnson,+R.&publication_year=2023&journal=IEEE+Internet+Things+J.&volume=10&pages=11224%E2%80%9311239&doi=10.1109/JIOT.2023.3252594
https://doi.org/10.1109/JIOT.2023.3252594
https://scholar.google.com/scholar_lookup?title=From+analyzing+operating+system+vulnerabilities+to+designing+multiversion+intrusion-tolerant+architectures&author=Gorbenko,+A.&author=Romanovsky,+A.&author=Tarasyuk,+O.&author=Biloborodov,+O.&publication_year=2019&journal=IEEE+Trans.+Reliab.&volume=69&pages=22%E2%80%9339&doi=10.1109/TR.2019.2897248
https://doi.org/10.1109/TR.2019.2897248
http://eprints.leedsbeckett.ac.uk/5690/1/fromAnalysingOperatingSystemVulnerabilities-GORBENKO.pdf
http://eprints.leedsbeckett.ac.uk/5690/1/fromAnalysingOperatingSystemVulnerabilities-GORBENKO.pdf
https://doi.org/10.2478/ijanmc-2024-0010
https://doi.org/10.2478/ijanmc-2024-0010
https://scholar.google.com/scholar_lookup?title=Internet+of+Things+(IoT)+Operating+Systems+Support,+Networking+Technologies,+Applications,+and+Challenges:+A+Comparative+Review&author=Javed,+F.&author=Afzal,+M.K.&author=Sharif,+M.&author=Kim,+B.&publication_year=2018&journal=IEEE+Commun.+Surv.+Tutor.&volume=20&pages=2062%E2%80%932100&doi=10.1109/COMST.2018.2817685
https://doi.org/10.1109/COMST.2018.2817685
https://scholar.google.com/scholar_lookup?title=Self-Healing+in+Emerging+Cellular+Networks:+Review,+Challenges,+and+Research+Directions&author=Asghar,+A.&author=Farooq,+H.&author=Imran,+A.&publication_year=2018&journal=IEEE+Commun.+Surv.+Tutor.&volume=20&pages=1682%E2%80%931709&doi=10.1109/COMST.2018.2825786
https://doi.org/10.1109/COMST.2018.2825786
https://scholar.google.com/scholar_lookup?title=A+Survey+of+Caching+Techniques+in+Cellular+Networks:+Research+Issues+and+Challenges+in+Content+Placement+and+Delivery+Strategies&author=Li,+L.&author=Zhao,+G.&author=Blum,+R.S.&publication_year=2018&journal=IEEE+Commun.+Surv.+Tutor.&volume=20&pages=1710%E2%80%931732&doi=10.1109/COMST.2018.2820021
https://doi.org/10.1109/COMST.2018.2820021
https://scholar.google.com/scholar_lookup?title=Coexistence+of+Wireless+Technologies+in+the+5+GHz+Bands:+A+Survey+of+Existing+Solutions+and+a+Roadmap+for+Future+Research&author=Naik,+G.&author=Liu,+J.&author=Park,+J.J.&publication_year=2018&journal=IEEE+Commun.+Surv.+Tutor.&volume=20&pages=1777%E2%80%931798&doi=10.1109/COMST.2018.2815585
https://doi.org/10.1109/COMST.2018.2815585
https://scholar.google.com/scholar_lookup?title=Survey+of+Fog+Computing:+Fundamental,+Network+Applications,+and+Research+Challenges&author=Mukherjee,+M.&author=Shu,+L.&author=Wang,+D.&publication_year=2018&journal=IEEE+Commun.+Surv.+Tutor.&volume=20&pages=1826%E2%80%931857&doi=10.1109/COMST.2018.2814571
https://doi.org/10.1109/COMST.2018.2814571
https://scholar.google.com/scholar_lookup?title=V2X+Access+Technologies:+Regulation,+Research,+and+Remaining+Challenges&author=MacHardy,+Z.&author=Khan,+A.&author=Obana,+K.&author=Iwashina,+S.&publication_year=2018&journal=IEEE+Commun.+Surv.+Tutor.&volume=20&pages=1858%E2%80%931877&doi=10.1109/COMST.2018.2808444
https://doi.org/10.1109/COMST.2018.2808444
https://scholar.google.com/scholar_lookup?title=Full+TCP/IP+for+8-bit+Architectures&conference=Proceedings+of+the+1st+International+Conference+on+Mobile+Systems,+Applications+and+Services&author=Dunkels,+A.&publication_year=2003&pages=85%E2%80%9398&doi=10.1145/1066116.1066118
https://doi.org/10.1145/1066116.1066118
https://doi.org/10.3390/s21072329
https://doi.org/10.9734/ajrcos/2023/v16i4380
https://doi.org/10.9734/ajrcos/2023/v16i4380

Zarif Bin Akhtar / Journal of Technology Informatics (JoTI), Vol. 6, No.1, October 2024, Page 58-69

69

rewrite". The Guardian. Archived from the original

on 12 October 2016.

[34] "Behind the IDC data: Windows still No. 1 in server

operating systems". ZDNet. 26 February 2010.

Archived from the original on 1 March 2010.

[35] Hyde, Randall (1996). "Chapter Seventeen:

Interrupts, Traps and Exceptions (Part 1)". The Art

Of Assembly Language Programming. No Starch

Press. Archived from the original on 22 December

2021. Retrieved 22 December 2021. "The concept

of an interrupt is something that has expanded in

scope over the years. The 80x86 family has only

added to the confusion surrounding interrupts by

introducing the int (software interrupt) instruction.

Indeed, different manufacturers have used terms

like exceptions, faults, aborts, traps and interrupts

to describe the phenomena this chapter discusses.

Unfortunately, there is no clear consensus as to the

exact meaning of these terms. Different authors

adopt different terms to their own use."

[36] PDP-1 Input-Output Systems Manual (PDF).

Digital Equipment Corporation. pp. 19–20.

Archived (PDF) from the original on 25 January

2019. Retrieved 16 August 2022.

[37] "Reading: Operating System". Lumen. Archived

from the original on 6 January 2019. Retrieved 5

January 2019.

