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Abstract:  Heart disease is one of the most dangerous illnesses because it has the potential to take people's lives. One 

of the causes of heart disease is arrhythmia, an abnormal condition of the heartbeat. To diagnose arrhythmia, analysis 

of electrocardiographic (ECG) signals can be performed. However, this analysis is very difficult to do conventionally 

and has the potential for errors, so there is a need for automatic ECG classification to detect arrhythmia. This study 

aims to fill the research gap by creating an ECG classification model to detect arrhythmia using the XGBoost 

algorithm. The results are quite good for each class, with accuracies for class N at 98.87%, class SVEB at 99.37%, 

class VEB at 99.4%, class F at 99.75%, and class Q at 99.99%. However, compared to existing methods in previous 

research, these results are still considered not better than those models. 
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INTRODUCTION 
Cardiovascular disease is one of the most 

common diseases affecting individuals of all ages, from 

infants to the elderly [1]. It is also the leading cause of 

death worldwide, accounting for 31% of global deaths 

[2]. Heart disease has significant economic impacts 

globally. It is recorded that heart disease causes an 

annual economic burden of €210 billion in Europe and 

$555 billion in the United States [3]. One of the causes 

of heart disease is arrhythmia, a condition where the 

heart's rhythm is abnormal [4]. A common type of 

arrhythmia is atrial fibrillation, characterized by a rapid 

and irregular heartbeat, with a global prevalence of 46.3 

million cases [5]. Arrhythmia is responsible for 80% of 

deaths caused by heart disease [6]. This highlights the 

significant impact of arrhythmia in addressing heart 

disease issues. 

One method to diagnose arrhythmia is through 

the use of electrocardiographic (ECG) signals [7]. 

However, this method presents a significant challenge 

due to the difficulty in detecting and categorizing 

different waveforms and morphologies within a signal, 

making the analysis only possible by specialists in the 

field [8]. This results in ECG heartbeat classification 

analysis being very time-consuming and prone to errors 

due to fatigue [9]. Therefore, there is a need to replace 

conventional methods involving human labor with an 

automated heartbeat classification system. 

This need can be addressed by leveraging the 

advancements in technology, which open opportunities 

to create a heartbeat classification model. Such a model 

can be developed thanks to the presence of artificial 

intelligence (AI) today. AI can create a classification 

model (supervised learning) that requires labeled data as 

a reference for predictions [10]. This is also supported by 

AI's ability to develop and improve its performance over 

time with minimal or no human intervention [11]. The 

utilization of AI in the form of machine learning for early 

diagnosis of various diseases has already had a 

substantial impact previously [12]. 

Several previous studies have conducted 

various experiments to create models for classifying 

types of arrhythmias based on ECG. One study utilized 

variable length heartbeats for classification with a 

combination of CNN and LSTM techniques, achieving a 

final accuracy of 98.10% [7]. Another study using a 

similar classification approach, CNN-LSTM, achieved a 

higher accuracy of 99.27% [13]. The use of CNN for 

feature extraction was also applied to another classifier, 

XGBoost, which achieved an accuracy of 99.69% [14]. 

Ensemble learning was also implemented using Random 

Forest and Support Vector Machine algorithms, resulting 

in an overall accuracy of 98.21% [15]. Another ensemble 

learning approach that included the kNN algorithm 

resulted in a lower accuracy of 97.8% [16]. 

This study aims to create an arrhythmia 

classification model based on ECG from a dataset using 

the XGBoost algorithm. The limitation of this study is 

that the model will only be tested on one dataset, and the 

proposed methodology will be implemented using only 

one algorithm. The expectation is that this research can 

contribute by filling the research gap where there is still 

no study that process the MIT-BIH Arrhythmia dataset 

using the XGBoost classifier with the same approach as 

this study. 

 

METHOD 
The proposed method consists of four major 

parts: pre-processing, feature extraction using TSFEL, 

model training, and model testing. The workflow of this 

method can be seen in Fig 1. 
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Dataset Description 

 The dataset used in this study is the public MIT-

BIH Arrhythmia Database, which consists of 48 ECG 

recordings, each spanning 30 minutes. These samples 

were taken at a frequency of 360Hz per channel with an 

ADC resolution of 11 bits at a 10mV interval [17], [18]. 

This dataset began distribution in 1980 and has 

undergone various updates, with the latest revision edited 

in 2018. Heartbeat labels are provided in the database 

based on annotations independently made by one or more 

cardiologists. Classification labels are then categorized 

based on the AAMI (Association for the Advancement 

of Medical Instrumentation) standards, where classes are 

divided into normal (N), supraventricular (SVEB or S), 

ventricular (VEB or V), fusion (F), and unclassified (Q) 

[19]. Each annotation code given in the MIT-BIH dataset 

is grouped according to the AAMI standards as shown in 

Table 1. 

 

Table 1. Mapping Of Heartbeat Class Categories in the 

MIT-BIH Dataset Based on AAMI Standards 

ID Heartbeat Types 

Based on AAMI 

Standards 

Heartbeat Types 

Based on MIT-

BIH 

0 

N (Normal or 

other than S, V, F, 

Q) 

normal beat (N), 

left bundle branch 

block beat (L), 

right bundle 

branch block beat 

(R), atrial escape 

beat(e), nodal 

(junctional) 

escape beat (j) 

1 

SVEB 

(Supraventricular 

Ectopic Beat) 

atrial premature 

beat (A), 

aberrated atrial 

premature beat 

(a), nodal 

(junctional) 

premature beat 

ID Heartbeat Types 

Based on AAMI 

Standards 

Heartbeat Types 

Based on MIT-

BIH 

(J), 

supraventricular 

premature beat (S)  

2 
VEB (Ventricular 

Ectopic Beat) 

premature 

ventricular 

contraction (V), 

ventricular escape 

beat (E) 

3 F (Fusion Beat) 

fusion of 

ventricular and 

normal beat (F) 

4 Q (Unknown Beat) 

paced beat (P), 

fusion of paced 

and normal beat 

(f), unclassified 

beat (U) 

  

In each recording for each patient, there are 2 

readable ECG channels. However, in this case, only one 

channel, the MDII channel, is used for the classification 

process. 

Pre-process and Segmentation 
Pre-processing of the ECG recording data aims 

to filter and reduce noise in the signal, making it optimal 

for recognizing classes in the learning approach in the 

subsequent process. The filtering is performed by 

applying a median filter with signal widths of 200ms and 

600ms, then subtracting the original signal and baseline 

values to produce a corrected signal. Next, the denoising 

process is carried out on this signal using the db4 

Discrete Wavelet Transform (DWT), applying a high-

pass filter to the DWT coefficients, and then inverting it 

to obtain a cleaner signal. 

After pre-processing, the signal is segmented 

based on the R-Peak annotations provided in the MIT-

BIH dataset. As a result, the data generated totals 

101,147 samples with the number of each class as 

 
Figure 1. Proposed Methodology Flow 
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follows: 90,320 (N), 7,229 (VEB), 2,781 (SVEB), 802 

(F), and 15 (Q). Sample data of each class signal can be 

illustrated in Fig. 2. 

 

 
Figure 2. Example of Signal for Each Class 

 

Feature Extraction 
 The segmented signal is a single data point that 

represents a specific class. This data inherently contains 

information that can be extracted and turned into features 

to be trained in a learning model approach. In this study, 

the Time Series Feature Extraction Library (TSFEL) is 

used to extract features from the signal data. TSFEL can 

handle multidimensional time series data, with available 

features divided into three domains: statistical, temporal, 

and spectral [22]. The total categories cover more than 

60 features and based on its default parameters used for 

ECG signals in this study, it can extract 314 features from 

each data point. The illustration of the feature extraction 

process using TSFEL can be seen in Fig. 3. The list of 

features obtained after extraction using TSFEL can be 

seen in Table 2. 

 

 

 

 

Table 2. Available Features in TSFEL 

Domain Feature Types 

Spectral 

FFT Mean coefficient 

Fundamental Frequency 

Human range energy 

LPCC (Linear Prediction Cepstral 

Coefficient) 

MFCC ( Mel-Frequency Cepstral 

Coefficient) 

Max power spectrum 

Maximum frequency 

Median frequency 

Power bandwith 

Spectral centroid 

Spectral decrease 

Spectral distance 

Spectral entropy 

Spectral kurtosis 

Spectral positive turning points 

Spectral roll-off 

Spectral roll-on 

Spectral skewness 

 

Statistical 

Absolute energy 

Average power 

ECDF (Empirical Cumulative 

Distribution Function) 

ECDF Percentile 

ECDF Percentile Count 

Entropy 

Histogram 

Interquartile range 

Kurtosis 

Max 

Mean 

Mean absolute deviation 

Median 

Median absolute deviation 

Min 

Peak to peak distance 

Root mean square 

Skewness 

Standard deviation 

Variance 

 
Figure 3. Feature Extraction Using TSFEL Process 
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Domain Feature Types 

 

Temporal 

Area under the curve 

Autocorrelation 

Centroid 

Mean absolute diff 

Mean diff 

Median absolute diff 

Median diff 

Negative turning points 

Neighbourhood peaks 

Positive turning points 

Signal distance 

Slope 

Sum absolute diff 

Zero crossing rate 

 

Data Balancing 
 In the previously mentioned dataset 

distribution, it is evident that the data is imbalanced. 

Most of the data belongs to the normal class, whereas a 

good classification requires balanced data across the 

minority classes. Therefore, data balancing performed to 

make the dataset balanced [13]. The data balance 

technique used is a combined Random Over Sampling 

and Random Under Sampling processes. The result of 

this phase can be seen in Table 3. 

 

Extreme Gradient Boosting 
Extreme Gradient Boosting (XGBoost) is an algorithm 

used for classification and regression. XGBoost is an 

enhancement of the boosting algorithm, which combines 

several weak models to form a strong model. 

 

Table 3. Data Distribution Before Balanced, After 

Random Over Sampling, and After Random Under 

Sampling 

Class 

Before 

Data 

Balancing 

After 

Random 

Over 

Sampling 

After 

Random 

Under 

Sampling 

N 72255 144510 36127 

SVEB 5783 11566 5783 

VEB 2225 4450 2225 

F 642 1284 642 

Q 12 24 12 

 

This algorithm develops an ensemble sequential number 

of trees [14]. 

In this case, the dateaset will be divided into 

training and testing data with a ratio of 3:1. The training 

data will be trained using XGBoost Classifier with the 

parameter gamma set to 0.1 as a way to control the 

complexity threshold for decision tree splits. The process 

is shown in Fig. 4. 

 

Evaluation Matrix 
 Evaluation of the performance of a classifier is 

necessary to ensure the accuracy of its predictions. For 

this evaluation, a recommendation matrix from AAMI is 

used, which includes TP (True Positive), FP (False 

Positive), TN (True Negative), and FN (False Negative) 

[19]. Such a matrix is needed because the classification 

performed is not binary but multiclass, so the confusion 

matrix cannot only encompass positive and negative 

classes. TP (True Positive) represents the condition when 

a positive instance is correctly predicted, while FP (False 

Positive) is the incorrect prediction of a negative instance 

as positive. On the other hand, a result is considered TN 

(True Negative) when a negative instance is correctly 

 
Figure 4. XGBoost Classifier Flow 
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predicted, whereas FN (False Negative) is the result 

when a positive instance is incorrectly predicted as 

negative. 

 These results are then used to calculate several 

performance metrics, namely: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 𝑥 100%                (1) 

 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑥 100%                 (2) 

  

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 𝑥 100%              (3) 

F1-Score = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 𝑥 100%      (4) 

 
Formula 1 shows the calculation method for 

accuracy, which is the ratio of correct predictions to the 

total number of predictions. Accuracy itself gives a 

straightforward overview of the prediction results. 

However, it becomes problematic when dealing with an 

imbalanced dataset, as accuracy can yield misleading 

results in such cases. To address this issue, sensitivity is 

calculated to determine the true positive rate through 

Formula 2, and specificity is measured to gauge the true 

negative rate through Formula 3. Finally, to get an 

understanding of the balance between the true positive 

rate and the true negative rate, the F1-Score is calculated 

as shown in Formula 4. The results of these calculations 

will be used as a reference for comparison with previous 

research studies. 

 

RESULT AND DISCUSSION 
 The model training was carried out using a 

dataset that had already undergone pre-processing, 

segmentation, feature extraction, and data balancing. The 

data used for training contains 314 features, and the 

distribution of each class can be seen in Table 2. In this 

study, experiments were also conducted to predict using 

a model trained on data that did not undergo the 

resampling process first. 

After successfully training the model and 

testing it on the test dataset, the prediction results were 

summarized in a confusion matrix. The confusion matrix 

helps map the results that can be categorized as TP, TN, 

FP, or FN. The confusion matrix results for the prediction 

of 5 classes according to the AAMI recommendations 

can be seen in Fig. 5. Based on the obtained results, there 

were a total of 261 prediction errors out of 20,230 test 

data points in the prediction model using resampled data. 

In contrast, the prediction model using unresampled data 

achieved fewer prediction errors, with only 244. 

However, this cannot be the main reference in 

determining the performance of each model. Therefore, 

it is necessary to pay attention to the specific prediction 

results of each class as shown in Table 4 and Table 5. 

 
(a) 

 

 
(b) 

 

Figure 5. Confusion Matrix for Resampled Data (a) and 

Unresampled Data (b) 

 

Table 4. Evaluation Result for Resampled Data 

Class Acc% Spe% Sen% F1% 

N 98.87 91.69 99.73 99.37 

SVEB 99.37 99.91 80.40 87.56 

VEB 99.44 99.70 96.06 96.06 

F 99.75 99.97 72.50 82.27 

Q 99.99 100 0 0 

 

Table 5. Evaluation Result for Unresampled Data 

Class Acc% Spe% Sen% F1% 

N 98.94 91.36 99.85 99.41 

SVEB 99.39 99.93 80.04 87.87 

VEB 99.54 99.79 96.20 96.73 

F 99.74 99.98 70.63 81.36 

Q 99.99 100 0 0 

 

The results indicate that almost all evaluation 

outcomes show that the model with unresampled data is 

better compared to the model with resampled data. 

However, it is important to note that the classes that need 

to be considered are the SVEB, VEB, and F classes. In 
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the medical field, sensitivity (recall) is an evaluation 

metric that requires more attention because it can affect 

patient treatment. The model with resampled data 

demonstrated better sensitivity values for the VEB and F 

classes. There was a significant increase, especially in 

the sensitivity of the F class, which increased by 

approximately 2%. This shows that the performance of 

the model with resampled data is better compared to the 

model with unresampled data in a medical context. 

 

Table 6. Result Comparison 

Model 
Met

ric 
N S V F Q 

CNN + LSTM 

[13] 

Acc% 97.95 99.16 99.80 99.25 99.48 

Sen% - - - - - 

Spe% - - - - - 

AdaBoost + 

Random Forest 

[20] 

Acc% 99.24 99.58 99.67 99.79 99.94 

Sen% 99.95 82.61 97.45 70.88 99.24 

Spe% 95.86 99.99 99.84 100 99.99 

Ensemble RF & 

SVM [15] 

Acc% 98.48 98.74 99.37 99.84 99.99 

Sen% 99.50 74.20 94.22 73.21 0 

Spe% 89.82 99.69 99.72 99.88 100 

CNN + Focal 

loss [21] 

Acc% 98.71 99.16 99.36 99.75 99.84 

Sen% 99.49 77.88 94.54 82.10 98.51 

Spe% 97.60 99.88 99.85 99.92 99.97 

Proposed 

method 

Acc% 98.87 99.37 99.44 99.75 99.99 

Sen% 99.73 80.40 96.06 72.50 0 

 Spe% 91.69 99.91 99.70 99.97 100 

 

From the comparison of results, it was found 

that the proposed method has a lower accuracy compared 

to existing methods. In Table 6, the bold numbers 

indicate the best accuracy for the corresponding matrix 

and class. The method using XGBoost as the classifier 

only excels in class Q, which cannot be considered a 

reliable reference due to the severe imbalance in the data, 

making the results for class Q inherently unreliable. This 

indicates the subpar performance of XGBoost as a 

classifier in achieving better accuracy compared to the 

methods used in previous studies. However, XGBoost 

does outperform certain methods in specific matrices and 

classes, but it is not the best when compared to all four 

other methods simultaneously. For example, the method 

using the XGBoost classifier outperforms the accuracy 

of each class when compared to CNN + Focal loss [21]. 

Another example is that XGBoost can also outperform 

most of the specificity values produced by the ensemble 

RF & SVM method, except for class F [15]. 

This research also has certain limitations that 

may have prevented the XGBoost algorithm from 

performing at its best. These limitations include the 

highly imbalanced dataset, which required sampling that 

may have compromised data integrity, the scope for 

further exploration of feature extraction techniques, and 

the use of hyperparameters to better optimize the 

XGBoost algorithm. To ensure the performance of 

XGBoost, further exploration is needed, especially 

regarding pre-processing, as it also plays a crucial role in 

determining the final evaluation results. 

 

CONCLUSION AND SUGGESTION  
The evaluation results of arrhythmia 

classification using the XGBoost classifier show that its 

performance is not quite satisfactory. This is evidenced 

by the comparison of performance with other models 

applied in previous research. Although the comparison 

shows that XGBoost can outperform certain models in 

specific matrices for certain classes, there are still other 

models that perform better when compared to XGBoost. 

Therefore, reconsideration is needed regarding the use of 

XGBoost for arrhythmia classification. There are 

certainly several areas for future work, such as trying this 

classifier on a different and larger dataset, as the current 

dataset is quite imbalanced. Additionally, ensemble 

learning could also be applied to improve the accuracy of 

the created classifier. 
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