Sistem Pengenalan Wajah Real-Time Menggunakan YOLOv7 untuk Akses Gedung TVRI Palembang Berbasis Web

Authors

  • Fatia Salsabilla Kyara Politeknik Negeri Sriwijaya
  • Aryanti Aryanti Politeknik Negeri Sriwijaya
  • R.A. Halimatussa'diyah Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.37802/joti.v7i2.1063

Keywords:

Facial Recognition, Security, Yolov7

Abstract

The development of information and communication technology today has had a significant impact on various aspects of life, including in the field of security. The use of face recognition is one of the facial recognition techniques, where the results of the camera capture will be matched with photos or facial curve textures that already exist in the database. The system is widely applied using various methods and artificial intelligence, one of which is YOLO (You Only Look Once). The purpose of this study is to design, develop, and identify challenges in implementing a real-time facial recognition system using web-based YOLOv7 that can detect the faces of people entering the TVRI Palembang building, then photos and times when a person's face is not detected will be stored in the database. The data used comes from literature studies, data collection obtained from photos of TVRI television station employees' faces, software design with technology selection, user interface design, and algorithm structures that will be used. After going through these stages, a system implementation was carried out for the application of the system and analysis of the data results obtained. The results showed that the face detection system using YOLOv7 showed very good performance. In 100 training epochs, the system achieved 96,6% face detection accuracy and 90% face recognition accuracy, successfully identifying almost all registered faces and detecting faces in real time. This system produces high accuracy in detecting faces and almost all faces that should be recognized are successfully detected.

Downloads

Download data is not yet available.

Author Biographies

Aryanti Aryanti, Politeknik Negeri Sriwijaya

Dosen Politeknik Negeri Sriwijaya jurusan elektro program studi D4 Tenik Telekomunikasi 

R.A. Halimatussa'diyah, Politeknik Negeri Sriwijaya

Dosen Politeknik Negeri Sriwijaya jurusan elektro prodi D4 Teknik Telekomunikasi

References

A. S. Djamar, S. R. U. Sompie, and M. D. Putro, “Implementasi Teknologi NFC Untuk Akses Pintu Masuk dan Keluar,” Tek. Inf., vol. 11, no. 1, 2017, doi: https://doi.org/10.35793/jti.v11i1.16971.

G. R. Safri, D. Irawan, and R. P. Astutik, “Penerapan Liveness Sebagai Anti-Spoofing Citra Digital Pada Sistem Keamanan Akses Kontrol Ruang Server Berbasis Raspberry Pi,” E-Link J. Tek. Elektro dan Inform., vol. 16, no. 2, p. 31, Dec. 2021, doi: 10.30587/e-link.v16i2.3333.

P. S. D. Aryani, M. Nur Ihsan, “Prototype Sistem Absensi Dengan Metode Face Recognition Berbasis Arduino Pada,” Semin. Nas. Teknol. Inf. dan Multimed. 2017, vol. 1, pp. 37–42, 2017, [Online]. Available: https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1642

S. Sugeng and A. Mulyana, “Sistem Absensi Menggunakan Pengenalan Wajah (Face Recognition) Berbasis Web LAN,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 1, pp. 127–135, Apr. 2022, doi: 10.32736/sisfokom.v11i1.1371.

D. A. Permatasari, Herwandi, D. S. Ma’arif, and A. Ramelan, “Rancang Bangun Alat Sistem Absensi Mahasiswa menggunakan Face Recognition dengan Metode YOLO berbasis Raspberry Pi,” JASIEK(Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 6, no. 2, 2024, doi: https://doi.org/10.26905/jasiek.v7i2.14144.

M. R. Prasanta, M. Y. Pranata, M. A. Firnanda, and S. Sendari, “Rancang Bangun Quadcopter Drone Untuk Deteksi Api Menggunakan YOLOv4,” CYCLOTRON, vol. 5, no. 1, pp. 1–3, Jan. 2022, doi: 10.30651/cl.v5i1.10013.

L. Susanti, N. K. Daulay, and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, p. 640, Apr. 2023, doi: 10.30865/jurikom.v10i2.6032.

M. Horvat, L. Jelečević, and G. Gledec, “Comparative Analysis of YOLOv5 and YOLOv6 Models Performance for Object Classification on Open Infrastructure: Insights and Recommendations,” in In 34th Central European Conference on Information and Intelligent Systems, Zagreb, Croatia, 2023, pp. 317–324. [Online]. Available: https://www.croris.hr/crosbi/publikacija/prilog-skup/803057

M. R. Daffa Ulhaq, M. A. Zaidan, and D. Firdaus, “Pengenalan Ekspresi Wajah Secara Real-Time Menggunakan Metode SSD Mobilenet Berbasis Android,” J. Technol. Informatics, vol. 5, no. 1, pp. 48–52, Oct. 2023, doi: 10.37802/joti.v5i1.387.

M. S. Hidayatulloh, “Sistem Pengenalan Wajah Menggunakan Metode YOLO (You Only Look Once),” J. Technol. Informatics, vol. 3, no. 1, pp. 27–34, 2021, doi: 10.37802/joti.v3i1.198.

Downloads