Prediksi Stunting pada Anak Balita Menggunakan Algoritma Extreme Gradient Boosting dan Bayesian Optimization
DOI:
https://doi.org/10.37802/joti.v7i2.1174Keywords:
Stunting, Prediction, XGBoost, Bayesian Optimization, Machine LearningAbstract
Stunting is a chronic malnutrition condition affecting children under five years that impairs cognitive development, physical growth, and future productivity. This study develops a stunting risk prediction model using the Extreme Gradient Boosting (XGBoost) algorithm with hyperparameter tuning and data balancing techniques. The dataset from Kaggle contains 120,998 records with variables including age, gender, height, and nutritional status. The methodology encompasses data preprocessing for outlier handling, categorical encoding, and feature extraction based on height thresholds. Feature selection utilized ANOVA F-test, while Exploratory Data Analysis identified height as the most influential attribute. To address class imbalance, Synthetic Minority Over-sampling Technique (SMOTE) was implemented, followed by Bayesian Optimization for hyperparameter tuning. Model evaluation was conducted using various data splits (80:20, 70:30, 60:40, 50:50) with metrics including accuracy, precision, recall, and F1-score. Results demonstrate that the optimized XGBoost model achieved exceptional performance with 0,982% accuracy, 0,973% precision, 0.979% recall, and 0,976% F1-score, consistently across all data configurations. The combination of XGBoost with Bayesian Optimization and SMOTE proves highly effective in handling imbalanced classification tasks. These findings highlight machine learning's potential in supporting public health initiatives through accurate early identification and targeted intervention for stunting prevention.
Downloads
References
O. Pahlevi, A. Amrin, and Y. Handrianto, “Optimasi Algoritma Naïve Bayes Berbasis Particle Swarm Optimization Untuk Klasifikasi Status Stunting,” Comput. Sci., vol. 4, no. 1, pp. 37–43, 2024, doi: 10.31294/coscience.v4i1.2963.
G. N. Masacgi and M. S. Rohman, “Optimasi Model Algoritma Klasifikasi menggunakan Metode Bagging pada Stunting Balita,” Edumatic J. Pendidik. Inform., vol. 7, no. 2, pp. 455–464, 2023, doi: 10.29408/edumatic.v7i2.23812.
SSGI, “Prevalensi Stunting Nasional Turun Menjadi 19,8%,” kemenkes. Accessed: Jul. 16, 2025. [Online]. Available: https://kemkes.go.id/id/ssgi-2024-prevalensi-stunting-nasional-turun-menjadi-198
N. F. Khusna, A. Rahmah, R. K. Nur, N. Izzah, K. C. Chumairoh, and F. Fauzi, “Implementasi Random Forest dalam Klasifikasi Kasus Stunting pada Balita dengan Hyperparameter Tuning Grid Search,” Pros. Semin. Nas. Sains Data, vol. 4, no. 1, pp. 791–801, 2024, doi: 10.33005/senada.v4i1.334.
H. H. Sinaga and S. Agustian, “Pebandingan Metode Decision Tree dan XGBoost untuk Klasifikasi Sentimen Vaksin Covid-19 di Twitter,” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 3, pp. 107–114, 2022, doi: 10.25077/teknosi.v8i3.2022.107-114.
R. Ubaidillah, M. Muliadi, D. T. Nugrahadi, M. R. Faisal, and R. Herteno, “Implementasi XGBoost Pada Keseimbangan Liver Patient Dataset dengan SMOTE dan Hyperparameter Tuning Bayesian Search,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1723, 2022, doi: 10.30865/mib.v6i3.4146.
M. Sulistiyono, Y. Pristyanto, S. Adi, and G. Gumelar, “Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi,” Sistemasi, vol. 10, no. 2, p. 445, 2021, doi: 10.32520/stmsi.v10i2.1303.
D. Asmawati, L. Arif Sanjani, C. Dimas Renggana, C. Fatichah, and T. Mustaqim, “Arrhythmia Classification with ECG Signal using Extreme Gradient Boosting (XGBoost) Algorithm,” J. Technol. Informatics, vol. 6, no. 1, pp. 36–42, 2024, doi: 10.37802/joti.v6i1.792.
S. LUTFIANI, T. H. Saragih, F. Abadi, M. R. Faisal, and D. Kartini, “Perbandingan Metode Extreme Gradient Boosting Dan Metode Decision Tree Untuk Klasifikasi Genre Musik,” J. Inform. Polinema, vol. 9, no. 4, pp. 373–382, 2023, doi: 10.33795/jip.v9i4.1319.
Muhamad Fikri, “Klasifikasi Status Stunting Pada Anak Bawah Lima Tahun Menggunakan Extreme Gradient Boosting,” Merkurius J. Ris. Sist. Inf. dan Tek. Inform., vol. 2, no. 4, pp. 173–184, Jun. 2024, doi: 10.61132/merkurius.v2i4.159.
Dwi Utami, Fathoni Dwiatmoko, and Nuari Anisa Sivi, “Analisis Pengaruh Bayesian Optimization Terhadap Kinerja SVM Dalam Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 140–150, 2025, doi: 10.29408/jit.v8i1.28468.
N. A. Pramudhyta and M. S. Rohman, “Perbandingan Optimasi Metode Grid Search dan Random Search dalam Algoritma XGBoost untuk Klasifikasi Stunting,” J. Media Inform. Budidarma, vol. 8, no. 1, p. 19, 2024, doi: 10.30865/mib.v8i1.6965.
R. P. Pradana, “Stunting Toddler (Balita) Detection (121K rows),” Kaggle. Accessed: Jul. 10, 2025. [Online]. Available: https://www.kaggle.com/datasets/rendiputra/stunting-balita-detection-121k-rows/code
M. Guhdar, A. Ismail Melhum, and A. Luqman Ibrahim, “Optimizing Accuracy of Stroke Prediction Using Logistic Regression,” J. Technol. Informatics, vol. 4, no. 2, pp. 41–47, 2023, doi: 10.37802/joti.v4i2.278.
H. Al Aziz and H. A. Santoso, “Model Prediksi Stunting Anak di Indonesia Menggunakan Extreme Gradient Boosting,” pp. 1072–1085, 2025, doi: 10.33364/algoritma/v.22-1.2289.
A. A. Dhani, T. A. Y. Siswa, and W. J. Pranoto, “Perbaikan Akurasi Random Forest Dengan ANOVA Dan SMOTE Pada Klasifikasi Data Stunting,” Teknika, vol. 13, no. 2, pp. 264–272, 2024, doi: 10.34148/teknika.v13i2.875.
F. M. T. Pane and D. Hindarto, “Comparative Analysis of Machine Learning Models for Stunting Prediction in Jakarta,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 9, no. 4, pp. 1365–1375, 2025, doi: 10.35870/jtik.v9i4.3853.
Downloads
Issue
Section
License
Copyright (c) 2025 Journal of Technology and Informatics (JoTI)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.















