K-Means Clustering untuk Analisis Tren Peminjaman Buku di Perpustakaan

Authors

DOI:

https://doi.org/10.37802/joti.v7i1.933

Keywords:

K-Means Clustering, Trend Analysis, Book Borrowing, Data Clustering, Library

Abstract

This study aims to analyze book borrowing trends in libraries using the K-Means Clustering algorithm in Orange Data Mining. The data used in this research includes historical book borrowing records, such as borrowing frequency, book categories, and borrowing times. The study clusters the data to identify significant patterns and trends. The analysis process begins with data preprocessing, including data cleaning, normalization, and transformation. Subsequently, the K-Means algorithm is applied to divide the data into several clusters based on similarities in borrowing patterns. The results show that books in certain categories, exhibit distinct borrowing patterns. The generated clusters provide insights into the characteristics of groups of book titles with high borrowing intensity and book titles that tend to be borrowed at specific times. These insights can be utilized for more effective book collection management, the development of library promotion strategies, and the creation of book recommendation systems. This study demonstrates that the K-Means Clustering algorithm is an effective tool for library data analysis, enabling libraries to understand user needs and improve the services they provide.

Downloads

Download data is not yet available.

References

D. Siburian, S. Retno Andani, I. Purnama Sari, and G. Artikel, “Implementasi Algoritma K-Means untuk Pengelompokkan Peminjaman Buku Pada Perpustakaan Sekolah Implementation of K-Means Algorithm for Clustering Books Borrowing in School Libraries,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 2, pp. 2828–9099, 2022, doi: 10.55123/jomlai.v1i2.725.

R. E. Pawening, “Algoritma K-Means untuk Mengukur Kepuasan Mahasiswa Menggunakan E-Learning,” Journal of Technology and Informatics (JoTI), vol. 3, no. 1, pp. 27–33, Oct. 2021, doi: 10.37802/joti.v3i1.201.

Dimas Reza Nugraha, Ahmad Turmudi Zy, and Aswan Supriyadi Sunge, “The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia),” Journal of Computer Networks, Architecture and High Performance Computing, vol. 6, no. 3, pp. 1055–1065, 2024.

A. Salsabiela, A. P. Kuncoro, P. Subarkah, and P. Arsi, “Rekomendasi Restock Barang di Toko Pojok UMKM Menggunakan Algoritma K-Means Clustering,” Journal of Technology and Informatics (JoTI), vol. 5, no. 2, pp. 87–92, Apr. 2024, doi: 10.37802/joti.v5i2.554.

P. Alga Vredizon, H. Firmansyah, N. Shafira Salsabila, and W. Eko Nugroho, “Penerapan Algoritma K-Means Untuk Mengelompokkan Makanan Berdasarkan Nilai Nutrisi,” Journal of Technology and Informatics (JoTI), vol. 5, no. 2, pp. 108–115, Apr. 2024, doi: 10.37802/joti.v5i2.577.

J. Mantik and N. Hidayati, “Classification of books at SMP YPK Pematang Siantar using the k-means clustering method,” Online, 2023.

F. Munawar, A. Nasution, P. Studi Sistem Informasi, and S. Tinggi Manajemen Informatika dan Komputer Royal, “SISTEMASI: Jurnal Sistem Informasi Pengelompokan Wilayah Berdasarkan Kubik Air menggunakan Algoritma K-Means pada Perumda Air Minum Tirta Silaupiasa Kabupaten Asahan Regional Grouping Based on Cubic Water Using K-Means Algorithm at Perumda Air Minum Tirta Silaupiasa Asahan Regency,” Sistem Informasi, vol. 13, no. 2, pp. 789–801, Mar. 2024, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

I. Azhami and R. Fauziah, “Penerapan Rapidminer Pada Data Mining Klastering (Kasus: Distribusi Persentase Rumah Tangga Menurut Kabupaten/Kota Dan Bahan Bakar Untuk Memasak),” Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 1, no. 2, pp. 52–58, Apr. 2020, [Online]. Available: https://www.sumut.bps.go.id.

A. Ashabi, “Enhancement of Parallel K-Means Algorithm for Clustering Big Datasets,” Malaysia, Dec. 2022.

Ika Anikah, Agus Surip, Nela Puji Rahayu, Muhammad Harun Al- Musa, and Edi Tohidi, “Pengelompokan Data Barang Dengan Menggunakan Metode K-Means Untuk Menentukan Stok Persediaan Barang,” KOPERTIP : Jurnal Ilmiah Manajemen Informatika dan Komputer, vol. 4, no. 2, pp. 58–64, Jun. 2022, doi: 10.32485/kopertip.v4i2.120.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining untuk Clustering Kasus Covid-19 di Provinsi Lampung dengan Algoritma K-Means,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

M. Oktavianus and H. Artikel, “Aplikasi Sistem Informasi Repository Skripsi Berbasis Web Menggunakan Algoritma K-Means Pada Universitas Dipa Makassar,” Digital Transformation Technology, vol. 4, no. 2, pp. 799–805, Sep. 2024, doi: 10.47709/digitech.v4i2.4677.

E. D. Pratomo, T. Irawati, and W. L. Y. Saptomo, “Metode K-Means dalam Pemetaan Penyebaran Pamsimas,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 7, no. 2, Jan. 2020, doi: 10.30646/tikomsin.v7i2.449.

U. Surapati and M. Jannah, “Penerapan Data Mining Menggunakan Metode K-Means Untuk Mengetahui Minat Customer Dalam Pembelian Merchandise Kpop,” Jurnal Sains dan Teknologi, vol. 5, no. 3, pp. 875–884, Feb. 2014, doi: 10.55338/saintek.v5i1.2739.

N. Karmila Sari and Y. Hendriyani, “Clustering Data Pengunjung UPT Perpustakaan, Penerbitan dan Percetakan Universitas Negeri Padang Menggunakan Algoritma K-Means,” Jurnal Pendidikan Tambusai, vol. 7, no. 3, pp. 29913–29923, 2023.

Downloads